Umar Ibrahim Haruna, Lin Hang, Liu Hongwei, Cao Rihong
School of Resources and Safety Engineering, Central South University, Changsha 410083, China.
Department of Civil Engineering, Faculty of Engineering, Aliko Dangote University of Science and Technology, Wudil 713101, Kano State, Nigeria.
Materials (Basel). 2025 Apr 15;18(8):1807. doi: 10.3390/ma18081807.
Accurate joint roughness coefficient (JRC) estimation is crucial for understanding rock mass mechanical behavior, yet existing predictive models show limitations in capturing complex morphological characteristics of geological surfaces. This study developed an advanced hybrid ensemble learning methodology (HELIOS-Stack) to enhance JRC prediction accuracy by integrating multiple machine learning models and statistical analysis techniques. The research implemented a hybrid ensemble approach combining random forest regression, XGBoost, LightGBM, support vector regression, multilayer perceptron models, and meta-learner using LightGBM as the final estimator. The study analyzed 112 rock samples using eight statistical parameters. Model performance was evaluated against 12 empirical regression models using comprehensive statistical metrics. HELIOS-Stack achieved exceptional accuracy with R values of 0.9884 (training) and 0.9769 (testing), significantly outperforming traditional empirical models and alternative machine learning models. Also, the HELIOS-Stack statistical evaluation demonstrated superior performance across multiple metrics, including mean absolute error (training: 1.0165, testing: 1.4097) and concordance index (training: 0.99, testing: 0.987). The analysis identified three distinct roughness clusters: high (JRC 16-20), moderate (JRC 8-15), and smooth (JRC 0.4-7). The HELIOS-Stack methodology significantly advances rock discontinuity characterization, establishing a new benchmark for geological surface analysis. This innovative approach offers transformative applications in geotechnical engineering, rock mass stability assessment, and geological modeling through its unprecedented precision in JRC prediction.
准确估算节理粗糙度系数(JRC)对于理解岩体力学行为至关重要,但现有的预测模型在捕捉地质表面复杂形态特征方面存在局限性。本研究开发了一种先进的混合集成学习方法(HELIOS-Stack),通过整合多种机器学习模型和统计分析技术来提高JRC预测精度。该研究采用了一种混合集成方法,将随机森林回归、XGBoost、LightGBM、支持向量回归、多层感知器模型以及以LightGBM作为最终估计器的元学习器相结合。该研究使用八个统计参数分析了112个岩石样本。使用综合统计指标针对12个经验回归模型评估了模型性能。HELIOS-Stack取得了卓越的精度,训练集的R值为0.9884,测试集的R值为0.9769,显著优于传统经验模型和其他机器学习模型。此外,HELIOS-Stack的统计评估在多个指标上表现出卓越性能,包括平均绝对误差(训练集:1.0165,测试集:1.4097)和一致性指数(训练集:0.99,测试集:0.987)。分析确定了三个不同的粗糙度聚类:高(JRC 16 - 20)、中(JRC 8 - 15)和平滑(JRC 0.4 - 7)。HELIOS-Stack方法显著推进了岩石不连续性表征,为地质表面分析建立了新的基准。这种创新方法通过其在JRC预测方面前所未有的精度,在岩土工程、岩体稳定性评估和地质建模中提供了变革性应用。