Suppr超能文献

通过生物信息学和机器学习方法鉴定ST段抬高型心肌梗死中与M1巨噬细胞相关的生物标志物。

Identification of biomarkers associated with M1 macrophages in the ST-segment elevation myocardial infarction through bioinformatics and machine learning approaches.

作者信息

Li Huiying, Zhu Qiwei, Wang Wei, Bao Yu, Bai Yongyi, Liu Hongbin, Leng Wenxiu

机构信息

Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.

Medical School of Chinese PLA, 28 Fuxing Road, Haidian, Beijing, 100853, China.

出版信息

Sci Rep. 2025 Apr 1;15(1):11069. doi: 10.1038/s41598-025-89125-7.

Abstract

ST-segment elevation myocardial infarction (STEMI) is considered a critical cardiac condition with a poor prognosis. Shortly after STEMI occurs, the increased number of circulating leukocytes including macrophages can lead to the accumulation of more cells in the myocardium, affecting the cardiac immune microenvironment. Identifying serum biomarkers associated with immune infiltration after STEMI is important for diagnosing and treating STEMI. In this work, we aimed to use integrated bioinformatics and machine learning methods to identify new biomarkers. First, candidate genes closely associated with M1 macrophage immune infiltration and STEMI were obtained using the limma package, the CIBERSORTx package, weighted gene coexpression network analysis (WGCNA), and protein‒protein interaction (PPI) networks from the GSE59867 dataset, which comprises peripheral blood mononuclear cell (PBMC) samples. The STEMI patients were subsequently stratified into subtypes using the ConsensusClusterPlus package. Furthermore, using machine learning methods, we identified AKT3, GJC2, HMGCL and RBM17 as the genes with the greatest potential to be associated with STEMI subtypes and with M1 macrophage infiltration during the acute phase of STEMI. Finally, the expression profile and diagnostic value of the four feature genes were validated in the GSE59867 and GSE62646 datasets and in 24 patients using real-time PCR. This study revealed logically and comprehensively that AKT3, GJC2, HMGCL and RBM17, which are derived from PBMCs, could enhance the accuracy of STEMI diagnosis and might provide effective treatment options for STEMI patients.

摘要

ST段抬高型心肌梗死(STEMI)被认为是一种预后较差的严重心脏疾病。STEMI发生后不久,包括巨噬细胞在内的循环白细胞数量增加会导致更多细胞在心肌中积聚,影响心脏免疫微环境。识别与STEMI后免疫浸润相关的血清生物标志物对于STEMI的诊断和治疗具有重要意义。在这项研究中,我们旨在使用综合生物信息学和机器学习方法来识别新的生物标志物。首先,使用limma软件包、CIBERSORTx软件包、加权基因共表达网络分析(WGCNA)以及来自包含外周血单核细胞(PBMC)样本的GSE59867数据集的蛋白质-蛋白质相互作用(PPI)网络,获得与M1巨噬细胞免疫浸润和STEMI密切相关的候选基因。随后,使用ConsensusClusterPlus软件包将STEMI患者分层为不同亚型。此外,通过机器学习方法,我们确定AKT3、GJC2、HMGCL和RBM17是在STEMI急性期最有可能与STEMI亚型和M1巨噬细胞浸润相关的基因。最后,在GSE59867和GSE62646数据集中以及在24例患者中使用实时PCR验证了这四个特征基因的表达谱和诊断价值。本研究从逻辑和全面的角度揭示,源自PBMC的AKT3、GJC2、HMGCL和RBM17可以提高STEMI诊断的准确性,并可能为STEMI患者提供有效的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1df4/11961635/81c38765371f/41598_2025_89125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验