Suppr超能文献

用于比特币交易欺诈检测的图卷积网络

Graph convolution network for fraud detection in bitcoin transactions.

作者信息

Asiri Ahmad, Somasundaram K

机构信息

Department of Mathematics, Applied College at Mahail Aseer, King Khalid University, Abha, Saudi Arabia.

Department of Mathematics, Amrita School of Physical Sciences - Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.

出版信息

Sci Rep. 2025 Apr 1;15(1):11076. doi: 10.1038/s41598-025-95672-w.

Abstract

Anti-money laundering has been an issue in our society from the beginning of time. It simply refers to certain regulations and laws set by the government to uncover illegal money, which is passed as legal income. Now, with the emergence of cryptocurrency, it ensures pseudonymity for users. Cryptocurrency is a type of currency that is not authorized by the government and does not exist physically but only on paper. This provides a better platform for criminals for their illicit transactions. New algorithms have been proposed to detect illicit transactions. Machine learning and deep learning algorithms give us hope in identifying these anomalies in transactions. We have selected the Elliptic Bitcoin Dataset. This data set is a graph data set generated from an anonymous blockchain. Each transaction is mapped to real entities with two categories: licit and illicit. Some of them are not labeled. We have run different algorithms for predicting illicit transactions like Logistic Regression, Long Short Term Memory, Support Vector Machine, Random Forest, and a variation of Graph Neural Networks, which is called Graph Convolution Network (GCN). GCN is of special interest in our case. Different evaluation parameters such as accuracy, ROC and F1 score are analyzed for different models. Our experimental results show that the proposed GCN model gives the accuracy [Formula: see text], the AUC 0.9444 and the RMSE 0.1123, which concludes that our GCN is better than the existing models, in particular with the model proposed in Weber et al. (Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics, 2019. http://arxiv.org/abs/1908.02591 ).

摘要

从一开始,反洗钱就是我们社会中的一个问题。它简单地指政府制定的某些法规和法律,以揭露被当作合法收入的非法资金。如今,随着加密货币的出现,它为用户提供了匿名性。加密货币是一种未经政府授权的货币,它不存在实体形式,只存在于纸面。这为犯罪分子进行非法交易提供了一个更好的平台。人们已经提出了新的算法来检测非法交易。机器学习和深度学习算法让我们在识别交易中的这些异常情况方面看到了希望。我们选择了椭圆比特币数据集。这个数据集是一个从匿名区块链生成的图数据集。每笔交易都被映射到具有合法和非法两类的真实实体。其中一些没有被标记。我们运行了不同的算法来预测非法交易,如逻辑回归、长短期记忆网络、支持向量机、随机森林以及一种图神经网络的变体,即图卷积网络(GCN)。在我们的案例中,GCN特别受关注。针对不同模型分析了不同的评估参数,如准确率、ROC和F1分数。我们的实验结果表明,所提出的GCN模型的准确率为[公式:见原文],AUC为0.9444,RMSE为0.1123,这表明我们的GCN比现有模型更好, 特别是与Weber等人(《比特币中的反洗钱:用于金融取证的图卷积网络实验》,2019年。http://arxiv.org/abs/1908.02591 )提出的模型相比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c755/11961585/7be73b93c8d9/41598_2025_95672_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验