Suppr超能文献

基于多注意力机制的身份不敏感深度伪造检测模型

ID-insensitive deepfake detection model based on multi-attention mechanism.

作者信息

Sheng Yuncan, Zou Zhengrui, Yu Zongxuan, Pang Mengxue, Ou Wei, Han Wenbao

机构信息

School of Information and Communication Engineering, Hainan University, Haikou, 570228, China.

School of Cyberspace Security (School of Cryptology), Hainan University, Haikou, 570228, China.

出版信息

Sci Rep. 2025 Apr 1;15(1):11168. doi: 10.1038/s41598-025-96254-6.

Abstract

Deepfake technology has enabled the widespread distribution of manipulated facial content online, raising serious societal concerns. In recent years, deepfake detection has emerged as a critical research focus. However, existing methods frequently overlook the connection between local details and overall image features, while also failing to address the problem of implicit identity leakage. Consequently, their performance is suboptimal, particularly in cross-dataset evaluations. Specifically, the proposed multi-attention deepfake detection model consists of the following three parts: (1) Texture Feature Enhancement: We employ CondenseNet to enhance texture features efficiently, preserving subtle details and ensuring feature integrity; (2) Multi-Scale Artifact Detection: We introduce an artifact detection module that identifies potentially manipulated regions, enabling localized detection and minimizing the impact of identity information. (3) Multi-Attention Mechanism: By generating multiple attention maps, our model prioritizes different regions of the input image, fusing both texture and local features to improve classification performance. Our method is evaluated on the FaceForensics++ and DFDC benchmarks for facial manipulation detection. Additionally, we assess its cross-dataset performance on Celeb-DF-v2, achieving state-of-the-art results.

摘要

深度伪造技术使得经过处理的面部内容在网上广泛传播,引发了严重的社会担忧。近年来,深度伪造检测已成为一个关键的研究重点。然而,现有方法常常忽略局部细节与整体图像特征之间的联系,同时也未能解决隐含身份泄露的问题。因此,它们的性能并不理想,尤其是在跨数据集评估中。具体而言,所提出的多注意力深度伪造检测模型由以下三个部分组成:(1) 纹理特征增强:我们采用CondenseNet有效地增强纹理特征,保留细微细节并确保特征完整性;(2) 多尺度伪影检测:我们引入一个伪影检测模块,识别潜在的被处理区域,实现局部检测并将身份信息的影响降至最低。(3) 多注意力机制:通过生成多个注意力图,我们的模型对输入图像的不同区域进行优先级排序,融合纹理和局部特征以提高分类性能。我们的方法在用于面部操纵检测的FaceForensics++和DFDC基准上进行了评估。此外,我们在Celeb-DF-v2上评估了其跨数据集性能,取得了领先的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2675/11962151/7b4ead883aee/41598_2025_96254_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验