Suppr超能文献

基于深度特征堆叠和元学习的深度伪造检测

Deepfake detection using deep feature stacking and meta-learning.

作者信息

Naskar Gourab, Mohiuddin Sk, Malakar Samir, Cuevas Erik, Sarkar Ram

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.

Department of Computer Science, Asutosh College, Kolkata, 700026, India.

出版信息

Heliyon. 2024 Feb 15;10(4):e25933. doi: 10.1016/j.heliyon.2024.e25933. eCollection 2024 Feb 29.

Abstract

Deepfake is a type of face manipulation technique using deep learning that allows for the replacement of faces in videos in a very realistic way. While this technology has many practical uses, if used maliciously, it can have a significant number of bad impacts on society, such as spreading fake news or cyberbullying. Therefore, the ability to detect deepfake has become a pressing need. This paper aims to address the problem of deepfake detection by identifying deepfake forgeries in video sequences. In this paper, a solution to the said problem is presented, which at first uses a stacking based ensemble approach, where features obtained from two popular deep learning models, namely Xception and EfficientNet-B7, are combined. Then by selecting a near-optimal subset of features using a ranking based approach, the final classification is performed to classify real and fake videos using a meta-learner, called multi-layer perceptron. In our experimentation, we have achieved an accuracy of 96.33% on Celeb-DF (V2) dataset and 98.00% on the FaceForensics++ dataset using the meta-learning model both of which are higher than the individual base models. Various types of experiments have been conducted to validate the robustness of the current method.

摘要

深度伪造是一种利用深度学习的面部操纵技术,它能够以非常逼真的方式替换视频中的面部。虽然这项技术有许多实际用途,但如果被恶意使用,它会对社会产生大量不良影响,比如传播假新闻或网络欺凌。因此,检测深度伪造的能力已成为迫切需求。本文旨在通过识别视频序列中的深度伪造赝品来解决深度伪造检测问题。本文提出了一个针对上述问题的解决方案,该方案首先使用基于堆叠的集成方法,将从两个流行的深度学习模型(即Xception和EfficientNet - B7)获得的特征进行组合。然后通过基于排序的方法选择特征的近似最优子集,使用一个名为多层感知器的元学习器进行最终分类,以区分真实视频和伪造视频。在我们的实验中,使用元学习模型在Celeb - DF (V2)数据集上达到了96.33%的准确率,在FaceForensics++数据集上达到了98.00%的准确率,这两个准确率均高于单个基础模型。我们进行了各种类型的实验来验证当前方法的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00d/11636820/4702718f4750/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验