Suppr超能文献

使用用于表格数据的无代码机器学习工具在不进行眼底检查的情况下预测视网膜静脉阻塞风险:来自韩国的一项全国性横断面研究。

Retinal vein occlusion risk prediction without fundus examination using a no-code machine learning tool for tabular data: a nationwide cross-sectional study from South Korea.

作者信息

Yu Na Hyeon, Shin Daeun, Ryu Ik Hee, Yoo Tae Keun, Koh Kyungmin

机构信息

Department of Ophthalmology, Kim's Eye Hospital, Konyang University College of Medicine, Seoul, South Korea.

Department of Refractive Surgery, B&VIIT Eye Center, Seoul, South Korea.

出版信息

BMC Med Inform Decis Mak. 2025 Mar 7;25(1):118. doi: 10.1186/s12911-025-02950-8.

Abstract

BACKGROUND

Retinal vein occlusion (RVO) is a leading cause of vision loss globally. Routine health check-up data-including demographic information, medical history, and laboratory test results-are commonly utilized in clinical settings for disease risk assessment. This study aimed to develop a machine learning model to predict RVO risk in the general population using such tabular health data, without requiring coding expertise or retinal imaging.

METHODS

We utilized data from the Korea National Health and Nutrition Examination Surveys (KNHANES) collected between 2017 and 2020 to develop the RVO prediction model, with external validation performed using independent data from KNHANES 2021. Model construction was conducted using Orange Data Mining, an open-source, code-free, component-based tool with a user-friendly interface, and Google Vertex AI. An easy-to-use oversampling function was employed to address class imbalance, enhancing the usability of the workflow. Various machine learning algorithms were trained by incorporating all features from the health check-up data in the development set. The primary outcome was the area under the receiver operating characteristic curve (AUC) for identifying RVO.

RESULTS

All machine learning training was completed without the need for coding experience. An artificial neural network (ANN) with a ReLU activation function, developed using Orange Data Mining, demonstrated superior performance, achieving an AUC of 0.856 (95% confidence interval [CI], 0.835-0.875) in internal validation and 0.784 (95% CI, 0.763-0.803) in external validation. The ANN outperformed logistic regression and Google Vertex AI models, though differences were not statistically significant in internal validation. In external validation, the ANN showed a marginally significant improvement over logistic regression (P = 0.044), with no significant difference compared to Google Vertex AI. Key predictive variables included age, household income, and blood pressure-related factors.

CONCLUSION

This study demonstrates the feasibility of developing an accessible, cost-effective RVO risk prediction tool using health check-up data and no-code machine learning platforms. Such a tool has the potential to enhance early detection and preventive strategies in general healthcare settings, thereby improving patient outcomes.

摘要

背景

视网膜静脉阻塞(RVO)是全球视力丧失的主要原因。常规健康检查数据,包括人口统计学信息、病史和实验室检查结果,在临床环境中常用于疾病风险评估。本研究旨在开发一种机器学习模型,使用此类表格形式的健康数据预测普通人群中的RVO风险,无需编码专业知识或视网膜成像。

方法

我们利用2017年至2020年期间收集的韩国国家健康与营养检查调查(KNHANES)数据来开发RVO预测模型,并使用2021年KNHANES的独立数据进行外部验证。模型构建使用Orange Data Mining(一个具有用户友好界面的开源、无代码、基于组件的工具)和谷歌Vertex AI进行。采用了一个易于使用的过采样函数来解决类别不平衡问题,提高工作流程的可用性。通过纳入开发集中健康检查数据的所有特征,对各种机器学习算法进行了训练。主要结果是用于识别RVO的受试者操作特征曲线下面积(AUC)。

结果

所有机器学习训练均无需编码经验即可完成。使用Orange Data Mining开发的具有ReLU激活函数的人工神经网络(ANN)表现出卓越性能,内部验证中的AUC为0.856(95%置信区间[CI],0.835 - 0.875),外部验证中的AUC为0.784(95%CI,0.763 - 0.803)。ANN优于逻辑回归和谷歌Vertex AI模型,尽管在内部验证中差异无统计学意义。在外部验证中,ANN与逻辑回归相比有略微显著的改善(P = 0.044),与谷歌Vertex AI相比无显著差异。关键预测变量包括年龄、家庭收入和血压相关因素。

结论

本研究证明了使用健康检查数据和无代码机器学习平台开发一种可及、经济高效的RVO风险预测工具的可行性。这样一种工具有可能在一般医疗保健环境中加强早期检测和预防策略,从而改善患者结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验