Savva Loizos, Bryan Anthony, Vinopal Dominik, Gonzalez-Navarro Oscar E, Kosgey Zennah, Ndung'u Kimani Cyrus, Horo Jemal Tola, Danu Kitessa Gutu, Molla Messele, Alemayehu Yoseph, Hodson David P, Saunders Diane G O
John Innes Centre, Norwich Research Park, Norwich, UK.
Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya.
BMC Genomics. 2025 Apr 1;26(1):327. doi: 10.1186/s12864-025-11428-w.
Fungal plant disease outbreaks are increasing in both scale and frequency, posing severe threats to agroecosystem stability, native biodiversity and food security. Among these, the notorious wheat stem rust fungus, Puccinia graminis f.sp. tritici (Pgt), has threatened wheat production since the earliest days of agriculture. New Pgt strains continue to emerge and quickly spread over vast distances through the airborne dispersal of asexual urediniospores, triggering extensive disease outbreaks as these exotic Pgt strains often overcome resistance in dominant crop varieties of newly affected regions. This highlights the urgent need for a point-of-care, real-time Pgt genotyping platform to facilitate early detection of emerging Pgt strains.
In this study, we developed a simple amplicon-based re-sequencing platform for rapid genotyping of Pgt isolates. This system is built around a core set of 276 Pgt genes that we found are highly polymorphic between Pgt isolates and showed that the sequence of these genes alone could be used to accurately type Pgt strains to particular lineages. We also developed a simplistic DNA preparation method and an automated bioinformatic pipeline, to enable these Pgt gene markers to be sequenced and analysed rapidly using the MinION nanopore sequencing device. This approach successfully enabled the typing of Pgt strains within approximately 48 h of collecting Pgt-infected wheat samples, even in resource-limited locations in Kenya and Ethiopia. In addition, we incorporated monitoring capabilities for sequence variations in Pgt genes that encode targets of the azole and succinate dehydrogenase inhibitor fungicides, enabling real-time tracking of potential shifts in fungicide sensitivity.
The newly developed Pgt Mobile And Real-time, PLant disEase (MARPLE) diagnostics platform we established, now allows precise typing of individual Pgt strains while simultaneously tracking changes in fungicide sensitivity, providing an early warning system for potential indicators of changes in the Pgt population and emerging fungicide resistance. Further integration of this Pgt MARPLE diagnostics platform into national surveillance programmes will support more informed management decisions and timely responses to Pgt disease outbreaks, helping reduce the devastating crop losses currently caused by this 'cereal killer'.
真菌性植物病害的爆发在规模和频率上都在增加,对农业生态系统稳定性、本地生物多样性和粮食安全构成严重威胁。其中,臭名昭著的小麦秆锈菌,即小麦柄锈菌(Pgt),自农业早期就一直威胁着小麦生产。新的Pgt菌株不断出现,并通过无性夏孢子的空气传播迅速远距离扩散,由于这些外来的Pgt菌株常常克服新受影响地区主要作物品种的抗性,从而引发广泛的病害爆发。这凸显了迫切需要一个即时护理、实时的Pgt基因分型平台,以促进对新兴Pgt菌株的早期检测。
在本研究中,我们开发了一个基于简单扩增子的重测序平台,用于对Pgt分离株进行快速基因分型。该系统围绕一组276个Pgt核心基因构建,我们发现这些基因在Pgt分离株之间具有高度多态性,并表明仅这些基因的序列就可用于将Pgt菌株准确分型到特定谱系。我们还开发了一种简单的DNA制备方法和一个自动化生物信息学流程,以使这些Pgt基因标记能够使用MinION纳米孔测序设备快速测序和分析。即使在肯尼亚和埃塞俄比亚资源有限的地区,这种方法也能在采集感染Pgt的小麦样本后约48小时内成功对Pgt菌株进行分型。此外,我们纳入了对编码唑类和琥珀酸脱氢酶抑制剂杀菌剂靶标的Pgt基因序列变异的监测能力,能够实时追踪杀菌剂敏感性的潜在变化。
我们建立的新开发的Pgt移动和实时植物病害(MARPLE)诊断平台,现在能够对单个Pgt菌株进行精确分型,同时追踪杀菌剂敏感性的变化,为Pgt种群变化和新出现的杀菌剂抗性的潜在指标提供预警系统。将这个Pgt MARPLE诊断平台进一步整合到国家监测计划中将支持更明智的管理决策,并及时应对Pgt病害爆发,有助于减少目前由这种“谷物杀手”造成的毁灭性作物损失。