文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合分析一种包含代谢和干性相关基因的新型特征用于肺腺癌的风险分层、评估临床结局和治疗反应

Integrative analysis of a novel signature incorporating metabolism and stemness-related genes for risk stratification and assessing clinical outcomes and therapeutic responses in lung adenocarcinoma.

作者信息

Zheng Wanrong, Zhou Chuchu, Xue Zixin, Qiao Ling, Wang Jianjun, Lu Feng

机构信息

Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China.

Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China.

出版信息

BMC Cancer. 2025 Apr 1;25(1):591. doi: 10.1186/s12885-025-13984-6.


DOI:10.1186/s12885-025-13984-6
PMID:40170009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11963273/
Abstract

BACKGROUND: Metabolism and stemness-related genes (msRGs) are critical in the development and progression of lung adenocarcinoma (LUAD). Nevertheless, reliable prognostic risk signatures derived from msRGs have yet to be established. METHODS: In this study, we downloaded and analyzed RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed univariate and multivariate Cox regression analyses, along with least absolute shrinkage and selection operator (LASSO) regression analysis, to identify msRGs that are linked to the prognosis of LUAD and to develop the prognostic risk signature. The prognostic value was evaluated using Kaplan-Meier analysis and log-rank tests. We generated receiver operating characteristic (ROC) curves to evaluate the predictive capability of the prognostic signature. To estimate the relative proportions of infiltrating immune cells, we utilized the CIBERSORT algorithm and the MCPCOUNTER method. The prediction of the half-maximal inhibitory concentration (IC50) for commonly used chemotherapy drugs was conducted through ridge regression employing the "pRRophetic" R package. The validation of our analytical findings was performed through both in vivo and in vitro studies. RESULTS: A novel five-gene prognostic risk signature consisting of S100P, GPX2, PRC1, ARNTL2, and RGS20 was developed based on the msRGs. A risk score derived from this gene signature was utilized to stratify LUAD patients into high- and low-risk groups, with the former exhibiting significantly poorer overall survival (OS). A nomogram was constructed incorporating the risk score and other clinical characteristics, showcasing strong capabilities in estimating the OS rates for LUAD patients. Furthermore, we observed notable differences in the infiltration of various immune cell subtypes, as well as in responses to immunotherapy and chemotherapy, between the low-risk and high-risk groups. Results from gene set enrichment analysis (GSEA) and in vitro studies indicated that the prognostic signature gene ARNTL2 influenced the prognosis of LUAD patients, primarily through the activation of the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS: Utilizing this gene signature for risk stratification could help with clinical treatment management and improve the prognosis of LUAD patients.

摘要

背景:代谢和干性相关基因(msRGs)在肺腺癌(LUAD)的发生和发展中至关重要。然而,源自msRGs的可靠预后风险特征尚未建立。 方法:在本研究中,我们从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)下载并分析了RNA测序和临床数据。我们采用单变量和多变量Cox回归分析以及最小绝对收缩和选择算子(LASSO)回归分析,以鉴定与LUAD预后相关的msRGs并构建预后风险特征。使用Kaplan-Meier分析和对数秩检验评估预后价值。我们生成受试者工作特征(ROC)曲线以评估预后特征的预测能力。为了估计浸润性免疫细胞的相对比例,我们使用了CIBERSORT算法和MCPCOUNTER方法。通过使用“pRRophetic”R包的岭回归对常用化疗药物的半数最大抑制浓度(IC50)进行预测。我们通过体内和体外研究对分析结果进行验证。 结果:基于msRGs开发了一种由S100P、GPX2、PRC1、ARNTL2和RGS20组成的新型五基因预后风险特征。从该基因特征得出的风险评分用于将LUAD患者分为高风险和低风险组,前者的总生存期(OS)明显较差。构建了一个包含风险评分和其他临床特征的列线图,显示出在估计LUAD患者OS率方面的强大能力。此外,我们观察到低风险和高风险组之间在各种免疫细胞亚型的浸润以及对免疫治疗和化疗的反应方面存在显著差异。基因集富集分析(GSEA)和体外研究结果表明,预后特征基因ARNTL2主要通过激活PI3K/AKT/mTOR信号通路影响LUAD患者的预后。 结论:利用这种基因特征进行风险分层有助于临床治疗管理并改善LUAD患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/8a1870743a6c/12885_2025_13984_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/c826e4b0ed8c/12885_2025_13984_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/82521bb68a87/12885_2025_13984_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/f5cac8ac0da1/12885_2025_13984_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/adf960478393/12885_2025_13984_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/b03300c54c2a/12885_2025_13984_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/f7add0bf6c4a/12885_2025_13984_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/6cf698497516/12885_2025_13984_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/ff38f87301ea/12885_2025_13984_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/8a1870743a6c/12885_2025_13984_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/c826e4b0ed8c/12885_2025_13984_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/82521bb68a87/12885_2025_13984_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/f5cac8ac0da1/12885_2025_13984_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/adf960478393/12885_2025_13984_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/b03300c54c2a/12885_2025_13984_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/f7add0bf6c4a/12885_2025_13984_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/6cf698497516/12885_2025_13984_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/ff38f87301ea/12885_2025_13984_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11963273/8a1870743a6c/12885_2025_13984_Fig9_HTML.jpg

相似文献

[1]
Integrative analysis of a novel signature incorporating metabolism and stemness-related genes for risk stratification and assessing clinical outcomes and therapeutic responses in lung adenocarcinoma.

BMC Cancer. 2025-4-1

[2]
Integration of single-cell and bulk RNA sequencing to identify a distinct tumor stem cells and construct a novel prognostic signature for evaluating prognosis and immunotherapy in LUAD.

J Transl Med. 2025-2-22

[3]
Stratification of Lung Adenocarcinoma Patients Based on and Immunohistochemistry Analyses of Oxidative Stress-Related Genes.

Cancer Biother Radiopharm. 2025-1

[4]
Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma.

Front Immunol. 2024-12-13

[5]
Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma.

J Transl Med. 2020-10-7

[6]
Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma.

Front Immunol. 2024

[7]
Comprehensive analysis of a novel signature incorporating lipid metabolism and immune-related genes for assessing prognosis and immune landscape in lung adenocarcinoma.

Front Immunol. 2022

[8]
Development of a reliable risk prognostic model for lung adenocarcinoma based on the genes related to endotheliocyte senescence.

Sci Rep. 2025-4-12

[9]
A Seven-Gene Signature with Close Immune Correlation Was Identified for Survival Prediction of Lung Adenocarcinoma.

Med Sci Monit. 2020-7-2

[10]
A methylation-related lncRNA-based prediction model in lung adenocarcinomas.

Clin Respir J. 2024-8

本文引用的文献

[1]
Prevalence of Lung Cancer Screening in the US, 2022.

JAMA Netw Open. 2024-3-4

[2]
Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib.

Mol Cancer. 2024-3-8

[3]
DOCK1 regulates the malignant biological behavior of endometrial cancer through c-Raf/ERK pathway.

BMC Cancer. 2024-3-4

[4]
RGS20 promotes non-small cell lung carcinoma proliferation via autophagy activation and inhibition of the PKA-Hippo signaling pathway.

Cancer Cell Int. 2024-3-2

[5]
TMEM65 promotes gastric tumorigenesis by targeting YWHAZ to activate PI3K-Akt-mTOR pathway and is a therapeutic target.

Oncogene. 2024-3

[6]
Evaluating distinct KRAS subtypes as potential biomarkers for immune checkpoint inhibitor efficacy in lung adenocarcinoma.

Front Immunol. 2023

[7]
Field effect transistor based wearable biosensors for healthcare monitoring.

J Nanobiotechnology. 2023-11-7

[8]
KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance.

Cell Rep. 2023-11-28

[9]
LINC00955 suppresses colorectal cancer growth by acting as a molecular scaffold of TRIM25 and Sp1 to Inhibit DNMT3B-mediated methylation of the PHIP promoter.

BMC Cancer. 2023-9-23

[10]
Comprehensive analysis of the lncRNAs-related immune gene signatures and their correlation with immunotherapy in lung adenocarcinoma.

Br J Cancer. 2023-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索