Suppr超能文献

用于超高剂量率电子束实时、全场逐脉冲表面剂量测定的成像系统。

Imaging system for real-time, full-field pulse-by-pulse surface dosimetry of UHDR electron beams.

作者信息

Clark Megan, Daniel Noah, Bruza Petr, Zhang Rongxiao, Jarvis Lesley, Hoopes P Jack, Gladstone David

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.

Department of Radiation Oncology, University of Missouri, Columbia, Missouri, USA.

出版信息

Med Phys. 2025 Jun;52(6):5026-5031. doi: 10.1002/mp.17784. Epub 2025 Apr 1.

Abstract

BACKGROUND

The interest in ultra-high dose rate (UHDR) radiation therapy (RT) has grown due to its potential to spare normal tissue. However, clinical application is hindered by dosimetry challenges, as current irradiators and dosimeters are not designed for UHDR's high fluence. To ensure safe treatment and accurate dose delivery, real-time dose and dose rate quantification methods are essential.

PURPOSE

We propose a novel scintillation imaging system for in vivo, pulse-by-pulse surface dose monitoring during delivery with a UHDR-capable Mobetron (IntraOp LLC Sunnyvale, CA, USA) system. This setup aims to measure entrance beam dose with high 2D spatial and temporal resolution.

METHODS

A modified collimating cone was 3D printed to house the imaging lens. The system featured a 90° sinuscope endoscope attached to a CMOS camera, was gated by the Mobetron's magnetron output signal, and captured light from a scintillator placed on the treatment surface. Three scintillator types were tested for their emission intensity and decay time. Dose and dose rate linearity studies were performed using various pulse lengths and repetition frequencies, respectively, and the imaging data were compared to an EDGE diode detector (SunNuclear Melbourne, FL, USA) and the Mobetron beam-current transformer (BCT) measurements.

RESULTS

Dose (R= 0.993) and dose rate (within 2%) were linear, and the temporal beam structure agreed with the diode and BCT data, as evident by the fact that it was successfully gated such that it captured each pulse during testing. Dose per pulse measurements agreed with diode and BCT data within 2.0 ± 1.2 cGy (0.6% ± 0.3%) and 2.5 ± 1.0 cGy (1.1% ± 0.4%), respectively.

CONCLUSIONS

The developed imaging system met the criteria for measuring entrance beam dose with high spatial and temporal resolution, offering a promising in vivo dosimetry method for UHDR RT in preclinical and clinical trials.

摘要

背景

由于超高剂量率(UHDR)放射治疗(RT)在保护正常组织方面具有潜力,人们对其兴趣日益浓厚。然而,剂量测定方面的挑战阻碍了其临床应用,因为目前的辐照器和剂量计并非为UHDR的高注量设计。为确保安全治疗和准确的剂量输送,实时剂量和剂量率量化方法至关重要。

目的

我们提出一种新型闪烁成像系统,用于在使用具备UHDR功能的Mobetron(美国加利福尼亚州桑尼维尔市IntraOp LLC公司)系统进行治疗时,逐脉冲地对体内表面剂量进行监测。此设置旨在以高二维空间和时间分辨率测量入射束剂量。

方法

通过3D打印制作了一个经过改良的准直圆锥体来容纳成像透镜。该系统的特点是将一个90°鼻窦镜内窥镜连接到一个CMOS相机上,由Mobetron的磁控管输出信号进行门控,并捕捉放置在治疗表面的闪烁体发出的光。对三种闪烁体类型的发射强度和衰减时间进行了测试。分别使用不同的脉冲长度和重复频率进行剂量和剂量率线性研究,并将成像数据与EDGE二极管探测器(美国佛罗里达州墨尔本市SunNuclear公司)以及Mobetron束流变压器(BCT)的测量结果进行比较。

结果

剂量(R = 0.993)和剂量率(在2%以内)呈线性关系,并且时间束结构与二极管和BCT数据一致,这一点在测试过程中成功进行门控以捕捉每个脉冲时得到了证明。每个脉冲的剂量测量结果与二极管和BCT数据的偏差分别在2.0 ± 1.2 cGy(0.6% ± 0.3%)和2.5 ± 1.0 cGy(1.1% ± 0.4%)以内。

结论

所开发的成像系统满足了以高空间和时间分辨率测量入射束剂量的标准,为临床前和临床试验中的UHDR RT提供了一种有前景的体内剂量测定方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验