Li Mengna, Huang Guohe, Chen Xiujuan, Xu Zeyuan, Huang Jing, Yin Jianan, Feng Renfei, Chen Ning, Read Stuart, Wang Shuguang
Environmental Systems Engineering Program, University of Regina, Regina, SK Canada.
China-Canada Center of Energy, Environment and Sustainability Research, UR-SDU, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China.
NPJ Clean Water. 2025;8(1):24. doi: 10.1038/s41545-025-00454-6. Epub 2025 Mar 30.
Ultrafiltration technology is one of the most efficient methods to address the issues of enhanced oil recovery-produced petroleum wastewater (EOR-PW) treatment. However, membrane fouling significantly impairs the efficiency of PW treatment. Moreover, the impacts of the complex components (e.g., salt ions, heavy metal ions, and pH level) in PW on membrane performance and the underlying mechanisms (i.e., fouling modes and interactive force) need further exploration. Herin, a novel ZrO/sericin polyacrylonitrile (ZrSS) ultrafiltration membrane was developed for PW treatment, and the impacts and mechanisms of contaminants in PW on membrane filtration performance were systematically investigated using synchrotron-based technology and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. The synchrotron-based characterization results indicate the successful fabrication of the ZrSS membrane and the uniform distribution of ZrO/sericin nanocomposites (ZrSS NCs) within the membrane matrix. Optimization results show that the 3ZrSS membrane exhibits the highest water flux of 337.21 LMH and oil rejection of 99.80%. There are 67.58% and 11.04% improvements compared to the pristine PAN (polyacrylonitrile) membrane. Under alkaline pH, high salt ion (NaCl) strength, and low heavy metal ion (Ba) concentration, the 3ZrSS membrane experienced the least fouling (22.68% water flux decline). XDLVO theory elucidates that, under such conditions, there is a strong repulsive U (total interaction force) between oil droplets and the 3ZrSS membrane, which is demonstrated via the strong repulsive EL (electrostatic double layer) force. The 3ZrSS membrane maintained 84.84% of its initial water flux after a 72 h long-term filtration. After four cycled filtration, the 3ZrSS membrane kept an extremely high FRR (flux recovery rate) of 98.83%. This study is anticipated to offer technical, theoretical, and practical insights for the on-demand PW treatment.
超滤技术是解决强化采油产生的含油废水(EOR-PW)处理问题最有效的方法之一。然而,膜污染严重影响了含油废水的处理效率。此外,含油废水中复杂成分(如盐离子、重金属离子和pH值)对膜性能的影响及其潜在机制(即污染模式和相互作用力)仍需进一步探索。在此,制备了一种用于处理含油废水的新型ZrO/丝胶蛋白聚丙烯腈(ZrSS)超滤膜,并利用基于同步加速器的技术和扩展的Derjaguin-Landau-Verwey-Overbeek(XDLVO)分析系统地研究了含油废水中污染物对膜过滤性能的影响及其机制。基于同步加速器的表征结果表明ZrSS膜制备成功,ZrO/丝胶蛋白纳米复合材料(ZrSS NCs)在膜基质中均匀分布。优化结果表明,3ZrSS膜表现出最高的水通量,为337.21 LMH,除油率为99.80%。与原始的PAN(聚丙烯腈)膜相比,分别提高了67.58%和11.04%。在碱性pH值、高盐离子(NaCl)强度和低重金属离子(Ba)浓度条件下,3ZrSS膜的污染程度最低(水通量下降22.68%)。XDLVO理论表明,在此条件下,油滴与3ZrSS膜之间存在很强的排斥性U(总相互作用力),这通过很强的排斥性EL(静电双层)力得到证明。经过72小时的长期过滤后,3ZrSS膜保持了其初始水通量的84.84%。经过四次循环过滤后,3ZrSS膜保持了98.83%的极高通量恢复率(FRR)。预计该研究将为按需处理含油废水提供技术、理论和实践方面的见解。