Suppr超能文献

异质因果效应估计的极小极大率

Minimax rates for heterogeneous causal effect estimation.

作者信息

Kennedy Edward H, Balakrishnan Sivaraman, Robins James M, Wasserman Larry

机构信息

Department of Statistics & Data Science, Carnegie Mellon University.

Machine Learning Department, Carnegie Mellon University.

出版信息

Ann Stat. 2024 Apr;52(2):793-816. doi: 10.1214/24-aos2369. Epub 2024 May 9.

Abstract

Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.

摘要

异质因果效应的估计——即政策和治疗效果如何因个体而异——是因果推断中的一项基本任务。近年来,人们提出了许多估计条件平均治疗效果(CATE)的方法,但围绕最优性的问题在很大程度上仍未得到解答。特别是,最优性的极小极大理论尚未发展起来,极小极大收敛率和最优速率估计器的构造仍然是未解决的问题。在本文中,我们推导了Hölder光滑非参数模型中CATE估计的极小极大率,并提出了一种新的局部多项式估计器,给出了其为极小极大最优的高级条件。我们的极小极大下界是通过模糊假设方法的局部化版本推导出来的,结合了非参数回归和泛函估计的下界构造。我们提出的估计器可以看作是基于高阶影响函数方法的局部化修改的局部多项式R-学习器。我们发现的极小极大率表现出几个有趣的特征,包括一个非标准的拐点现象和非参数回归与泛函估计率之间的异常插值。后者量化了CATE作为一个被估计量如何可以被视为回归/泛函混合体。

相似文献

1
Minimax rates for heterogeneous causal effect estimation.异质因果效应估计的极小极大率
Ann Stat. 2024 Apr;52(2):793-816. doi: 10.1214/24-aos2369. Epub 2024 May 9.
2
Minimax Estimation of Functionals of Discrete Distributions.离散分布泛函的极小极大估计
IEEE Trans Inf Theory. 2015 May;61(5):2835-2885. doi: 10.1109/tit.2015.2412945. Epub 2015 Mar 13.

本文引用的文献

1
Selective inference for effect modification via the lasso.通过套索进行效应修正的选择性推断。
J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):382-413. doi: 10.1111/rssb.12483. Epub 2021 Dec 14.
2
HIGHER ORDER ESTIMATING EQUATIONS FOR HIGH-DIMENSIONAL MODELS.高维模型的高阶估计方程
Ann Stat. 2017 Oct;45(5):1951-1987. doi: 10.1214/16-AOS1515. Epub 2017 Oct 31.
3
Metalearners for estimating heterogeneous treatment effects using machine learning.使用机器学习估计异质处理效应的元学习器。
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4156-4165. doi: 10.1073/pnas.1804597116. Epub 2019 Feb 15.
4
Semiparametric Minimax Rates.半参数极小极大率
Electron J Stat. 2009;3:1305-1321. doi: 10.1214/09-EJS479. Epub 2009 Dec 4.
5
Recursive partitioning for heterogeneous causal effects.异质因果效应的递归划分
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.
6
Super-Learning of an Optimal Dynamic Treatment Rule.最优动态治疗规则的超学习
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
7
Quadratic semiparametric Von Mises calculus.二次半参数冯·米塞斯演算
Metrika. 2009 Mar;69(2-3):227-247. doi: 10.1007/s00184-008-0214-3.
8
Subgroup identification from randomized clinical trial data.随机临床试验数据中的亚组识别。
Stat Med. 2011 Oct 30;30(24):2867-80. doi: 10.1002/sim.4322. Epub 2011 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验