Kennedy Edward H, Balakrishnan Sivaraman, Robins James M, Wasserman Larry
Department of Statistics & Data Science, Carnegie Mellon University.
Machine Learning Department, Carnegie Mellon University.
Ann Stat. 2024 Apr;52(2):793-816. doi: 10.1214/24-aos2369. Epub 2024 May 9.
Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference. Many methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a Hölder-smooth nonparametric model, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. Our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid.
异质因果效应的估计——即政策和治疗效果如何因个体而异——是因果推断中的一项基本任务。近年来,人们提出了许多估计条件平均治疗效果(CATE)的方法,但围绕最优性的问题在很大程度上仍未得到解答。特别是,最优性的极小极大理论尚未发展起来,极小极大收敛率和最优速率估计器的构造仍然是未解决的问题。在本文中,我们推导了Hölder光滑非参数模型中CATE估计的极小极大率,并提出了一种新的局部多项式估计器,给出了其为极小极大最优的高级条件。我们的极小极大下界是通过模糊假设方法的局部化版本推导出来的,结合了非参数回归和泛函估计的下界构造。我们提出的估计器可以看作是基于高阶影响函数方法的局部化修改的局部多项式R-学习器。我们发现的极小极大率表现出几个有趣的特征,包括一个非标准的拐点现象和非参数回归与泛函估计率之间的异常插值。后者量化了CATE作为一个被估计量如何可以被视为回归/泛函混合体。