Suppr超能文献

最优动态治疗规则的超学习

Super-Learning of an Optimal Dynamic Treatment Rule.

作者信息

Luedtke Alexander R, van der Laan Mark J

出版信息

Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.

Abstract

We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.

摘要

我们考虑估计一个最优动态双时间点治疗规则,该规则被定义为在动态治疗下使平均结果最大化的规则,其中候选规则仅限于仅依赖于用户提供的基线和中间协变量的子集。这个估计问题在一个关于数据分布的统计模型中得到解决,该模型是非参数的,超出了关于治疗和删失机制的可能知识。我们提出了这种最优动态策略的数据自适应估计器,它们是在脉冲函数和加权分类框架下通过基于顺序损失的学习来定义的。我们不是先验地选择一个估计框架和算法,而是建议使用基于超学习的交叉验证选择器来组合来自两个框架的估计器,该选择器旨在最小化适当的交叉验证风险。在一定条件下,根据基于损失的差异,所得到的选择器在渐近意义上保证与候选算法的最佳凸组合表现得一样好。我们提供模拟结果来支持我们的理论发现。

相似文献

1
Super-Learning of an Optimal Dynamic Treatment Rule.
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
2
Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule.
J Causal Inference. 2015 Mar;3(1):61-95. doi: 10.1515/jci-2013-0022.
3
Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes.
Biometrika. 2018 Sep;105(3):723-738. doi: 10.1093/biomet/asy017. Epub 2018 May 7.
4
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
5
Statistical learning of origin-specific statically optimal individualized treatment rules.
Int J Biostat. 2007;3(1):Article 6. doi: 10.2202/1557-4679.1040.
6
Online cross-validation-based ensemble learning.
Stat Med. 2018 Jan 30;37(2):249-260. doi: 10.1002/sim.7320. Epub 2017 May 4.
7
Direct effect models.
Int J Biostat. 2008;4(1):Article 23. doi: 10.2202/1557-4679.1064.
9
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
10
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.

引用本文的文献

1
Improving efficiency in transporting average treatment effects.
Biometrika. 2025;112(3). doi: 10.1093/biomet/asaf027. Epub 2025 Apr 8.
3
Predictive Modeling of Heterogeneous Treatment Effects in RCTs: A Scoping Review.
JAMA Netw Open. 2025 Jul 1;8(7):e2522390. doi: 10.1001/jamanetworkopen.2025.22390.
5
Mathematical modeling and mechanisms of HIV latency for personalized anti latency therapies.
NPJ Syst Biol Appl. 2025 Jun 12;11(1):64. doi: 10.1038/s41540-025-00538-6.
6
Guidance on individualized treatment rule estimation in high dimensions.
Int J Biostat. 2025 May 22. doi: 10.1515/ijb-2024-0005.
7
Estimating Treatment Effect Heterogeneity in Psychiatry: A Review and Tutorial With Causal Forests.
Int J Methods Psychiatr Res. 2025 Jun;34(2):e70015. doi: 10.1002/mpr.70015.
8
Minimax rates for heterogeneous causal effect estimation.
Ann Stat. 2024 Apr;52(2):793-816. doi: 10.1214/24-aos2369. Epub 2024 May 9.
9
Machine learning for estimating and comparing clinical rules for treating diarrheal illness with antibiotics.
medRxiv. 2025 Jan 12:2025.01.10.25320357. doi: 10.1101/2025.01.10.25320357.
10
Machine Learning Methods to Estimate Individualized Treatment Effects for Use in Health Technology Assessment.
Med Decis Making. 2024 Oct;44(7):756-769. doi: 10.1177/0272989X241263356. Epub 2024 Jul 26.

本文引用的文献

1
Targeted Learning of the Mean Outcome under an Optimal Dynamic Treatment Rule.
J Causal Inference. 2015 Mar;3(1):61-95. doi: 10.1515/jci-2013-0022.
2
New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes.
J Am Stat Assoc. 2015;110(510):583-598. doi: 10.1080/01621459.2014.937488.
3
Estimating Optimal Treatment Regimes from a Classification Perspective.
Stat. 2012 Jan 1;1(1):103-114. doi: 10.1002/sta.411.
4
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.
5
Statistical issues and limitations in personalized medicine research with clinical trials.
Int J Biostat. 2012 Jul 20;8(1):18. doi: 10.1515/1557-4679.1423.
6
PERFORMANCE GUARANTEES FOR INDIVIDUALIZED TREATMENT RULES.
Ann Stat. 2011 Apr 1;39(2):1180-1210. doi: 10.1214/10-AOS864.
9
Estimation and extrapolation of optimal treatment and testing strategies.
Stat Med. 2008 Oct 15;27(23):4678-721. doi: 10.1002/sim.3301.
10
Super learner.
Stat Appl Genet Mol Biol. 2007;6:Article25. doi: 10.2202/1544-6115.1309. Epub 2007 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验