Luedtke Alexander R, van der Laan Mark J
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
我们考虑估计一个最优动态双时间点治疗规则,该规则被定义为在动态治疗下使平均结果最大化的规则,其中候选规则仅限于仅依赖于用户提供的基线和中间协变量的子集。这个估计问题在一个关于数据分布的统计模型中得到解决,该模型是非参数的,超出了关于治疗和删失机制的可能知识。我们提出了这种最优动态策略的数据自适应估计器,它们是在脉冲函数和加权分类框架下通过基于顺序损失的学习来定义的。我们不是先验地选择一个估计框架和算法,而是建议使用基于超学习的交叉验证选择器来组合来自两个框架的估计器,该选择器旨在最小化适当的交叉验证风险。在一定条件下,根据基于损失的差异,所得到的选择器在渐近意义上保证与候选算法的最佳凸组合表现得一样好。我们提供模拟结果来支持我们的理论发现。