Suppr超能文献

人工智能技术提高甲状腺细针抽吸细胞学诊断准确性。

Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology.

机构信息

Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea.

Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Republic of Korea.

出版信息

Thyroid. 2024 Jun;34(6):723-734. doi: 10.1089/thy.2023.0384.

Abstract

Artificial intelligence (AI) is increasingly being applied in pathology and cytology, showing promising results. We collected a large dataset of whole slide images (WSIs) of thyroid fine-needle aspiration cytology (FNA), incorporating z-stacking, from institutions across the nation to develop an AI model. We conducted a multicenter retrospective diagnostic accuracy study using thyroid FNA dataset from the Open AI Dataset Project that consists of digitalized images samples collected from 3 university hospitals and 215 Korean institutions through extensive quality check during the case selection, scanning, labeling, and reviewing process. Multiple z-layer images were captured using three different scanners and image patches were extracted from WSIs and resized after focus fusion and color normalization. We pretested six AI models, determining Inception ResNet v2 as the best model using a subset of dataset, and subsequently tested the final model with total datasets. Additionally, we compared the performance of AI and cytopathologists using randomly selected 1031 image patches and reevaluated the cytopathologists' performance after reference to AI results. A total of 10,332 image patches from 306 thyroid FNAs, comprising 78 malignant (papillary thyroid carcinoma) and 228 benign from 86 institutions were used for the AI training. Inception ResNet v2 achieved highest accuracy of 99.7%, 97.7%, and 94.9% for training, validation, and test dataset, respectively (sensitivity 99.9%, 99.6%, and 100% and specificity 99.6%, 96.4%, and 90.4% for training, validation, and test dataset, respectively). In the comparison between AI and human, AI model showed higher accuracy and specificity than the average expert cytopathologists beyond the two-standard deviation (accuracy 99.71% [95% confidence interval (CI), 99.38-100.00%] vs. 88.91% [95% CI, 86.99-90.83%], sensitivity 99.81% [95% CI, 99.54-100.00%] vs. 87.26% [95% CI, 85.22-89.30%], and specificity 99.61% [95% CI, 99.23-99.99%] vs. 90.58% [95% CI, 88.80-92.36%]). Moreover, after referring to the AI results, the performance of all the experts (accuracy 96%, 95%, and 96%, respectively) and the diagnostic agreement (from 0.64 to 0.84) increased. These results suggest that the application of AI technology to thyroid FNA cytology may improve the diagnostic accuracy as well as intra- and inter-observer variability among pathologists. Further confirmatory research is needed.

摘要

人工智能(AI)在病理学和细胞学中的应用越来越广泛,显示出有前景的结果。我们收集了来自全国各机构的大量甲状腺细针抽吸细胞学(FNA)的全幻灯片图像(WSI)数据集,其中包含 z 堆叠,以开发 AI 模型。我们使用来自 Open AI 数据集项目的甲状腺 FNA 数据集进行了多中心回顾性诊断准确性研究,该数据集由通过在病例选择、扫描、标记和审查过程中进行广泛的质量检查,从 3 家大学医院和 215 家韩国机构收集的数字化图像样本组成。使用三种不同的扫描仪捕获多个 z 层图像,并从 WSI 中提取图像补丁,然后在焦点融合和颜色归一化后进行调整大小。我们预测试了六个 AI 模型,使用数据集的子集确定 Inception ResNet v2 是最佳模型,然后使用总数据集测试最终模型。此外,我们使用随机选择的 1031 个图像补丁比较了 AI 和细胞病理学家的性能,并在参考 AI 结果后重新评估了细胞病理学家的性能。总共使用来自 306 例甲状腺 FNA 的 10,332 个图像补丁进行 AI 训练,包括来自 86 个机构的 78 例恶性(甲状腺乳头状癌)和 228 例良性。Inception ResNet v2 在训练、验证和测试数据集上的准确率分别达到了 99.7%、97.7%和 94.9%(敏感性分别为 99.9%、99.6%和 100%,特异性分别为 99.6%、96.4%和 90.4%)。在 AI 与人类之间的比较中,AI 模型在超出两个标准差(准确率 99.71%[95%置信区间(CI),99.38-100.00%]与 88.91%[95% CI,86.99-90.83%]、敏感性 99.81%[95% CI,99.54-100.00%]与 87.26%[95% CI,85.22-89.30%]和特异性 99.61%[95% CI,99.23-99.99%]与 90.58%[95% CI,88.80-92.36%])方面优于平均专家细胞病理学家。此外,在参考 AI 结果后,所有专家的表现(准确率分别为 96%、95%和 96%)和诊断一致性(从 0.64 到 0.84)均有所提高。这些结果表明,将 AI 技术应用于甲状腺 FNA 细胞学可能会提高诊断准确性以及病理学家之间的内部和外部变异性。需要进一步的确认性研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验