Suppr超能文献

使用深度学习的整合多组学与常规血液分析:慢性病风险的经济高效早期预测

Integrative Multi-Omics and Routine Blood Analysis Using Deep Learning: Cost-Effective Early Prediction of Chronic Disease Risks.

作者信息

Dong Zhibin, Li Pei, Jiang Yi, Wang Zhihan, Fu Shihui, Che Hebin, Liu Meng, Zhao Xiaojing, Liu Chunlei, Zhao Chenghui, Zhong Qin, Rao Chongyou, Wang Siwei, Liu Suyuan, Hu Dayu, Wang Dongjin, Gao Juntao, Guo Kai, Liu Xinwang, Zhu En, He Kunlun

机构信息

Medical Innovation Research Division, Chinese PLA General Hospital, Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Medical Engineering Laboratory of Chinese PLA General Hospital, Beijing, 100038, China.

School of Computer science, National University of Defense Technology, Trinity Avenue, Kaifu District, Changsha, Hunan, 410005, China.

出版信息

Adv Sci (Weinh). 2025 Jun;12(22):e2412775. doi: 10.1002/advs.202412775. Epub 2025 Apr 2.

Abstract

Chronic noncommunicable diseases (NCDS) are often characterized by gradual onset and slow progression, but the difficulty in early prediction remains a substantial health challenge worldwide. This study aims to explore the interconnectedness of disease occurrence through multi-omics studies and validate it in large-scale electronic health records. In response, the research examined multi-omics data from 160 sub-healthy individuals at high altitude and then a deep learning model called Omicsformer is developed for detailed analysis and classification of routine blood samples. Omicsformer adeptly identified potential risks for nine diseases including cancer, cardiovascular conditions, and psychiatric conditions. Analysis of risk trajectories from 20 years of large clinical patients confirmed the validity of the group in preclinical risk assessment, revealing trends in increased disease risk at the time of onset. Additionally, a straightforward NCDs risk prediction system is developed, utilizing basic blood test results. This work highlights the role of multiomics analysis in the prediction of chronic disease risk, and the development and validation of predictive models based on blood routine results can help advance personalized medicine and reduce the cost of disease screening in the community.

摘要

慢性非传染性疾病(NCDs)通常具有发病缓慢、进展迟缓的特点,但早期预测的困难仍然是全球范围内一项重大的健康挑战。本研究旨在通过多组学研究探索疾病发生的内在联系,并在大规模电子健康记录中进行验证。为此,该研究检测了160名高原亚健康个体的多组学数据,随后开发了一种名为Omicsformer的深度学习模型,用于对常规血液样本进行详细分析和分类。Omicsformer能够准确识别包括癌症、心血管疾病和精神疾病在内的九种疾病的潜在风险。对20年大型临床患者风险轨迹的分析证实了该模型在临床前风险评估中的有效性,揭示了疾病发病时风险增加的趋势。此外,利用基本血液检测结果开发了一种简单的非传染性疾病风险预测系统。这项工作突出了多组学分析在慢性病风险预测中的作用,基于血常规结果的预测模型的开发和验证有助于推进个性化医疗,并降低社区疾病筛查成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/129c/12165040/142479392678/ADVS-12-2412775-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验