Suppr超能文献

用于高级CRISPR调控的创新化学策略。

Innovative Chemical Strategies for Advanced CRISPR Modulation.

作者信息

Liu Xingyu, Zhou Enyi, Qi Qianqian, Xiong Wei, Tian Tian, Zhou Xiang

机构信息

Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China.

出版信息

Acc Chem Res. 2025 Apr 15;58(8):1262-1274. doi: 10.1021/acs.accounts.5c00052. Epub 2025 Apr 2.

Abstract

ConspectusOver the past decade, RNA-guided gene editing technologies, particularly those derived from CRISPR systems, have revolutionized life sciences and opened unprecedented opportunities for therapeutic innovation. Despite their transformative potential, achieving precise control over the activity and specificity of these molecular tools remains a formidable challenge, requiring advanced and innovative regulatory strategies. We and others have developed new approaches that integrate chemical ingenuity with bioorthogonal techniques to achieve remarkable precision in CRISPR regulation. One key innovation lies in the chemical modulation of guide RNA (gRNA), significantly expanding the CRISPR toolkit. Strategies such as CRISPR-ON and CRISPR-OFF switches rely on selective chemical masking and demasking of gRNA. These approaches use either bulky chemical groups to preemptively mask RNA or minor, less obstructive groups to fine-tune its function, followed by bioorthogonal reactions to restore or suppress activity. These methodologies have proven to be pivotal for controlled gene editing and expression, addressing the challenges of precision, reversibility, and dynamic regulation.Parallel to these advances, the development of mesoporous metal-organic frameworks (MOFs) has emerged as a promising solution for RNA deprotection and activation. By serving as catalytic tools, MOFs enhance the versatility and efficiency of CRISPR systems, pushing their applications beyond the conventional boundaries. In addition, the synthesis of novel small molecules for regulating CRISPR-Cas9 activity marks a critical milestone in the evolution of gene therapy protocols. Innovative RNA structural control strategies have also emerged, particularly through the engineering of G-quadruplex (G4) motifs and G-G mismatches. These methods exploit the structural propensities of engineered gRNAs, employing small-molecule ligands to induce specific conformational changes that modulate the CRISPR activity. Whether stabilizing G4 formation or promoting G-G mismatches, these strategies demonstrate the precision and sophistication required for the molecular-level control of gene editing.Further enhancing these innovations, techniques like host-guest chemistry and conditional diacylation cross-linking have been developed to directly alter gRNA structure and function. These approaches provide nuanced, reversible, and safe control over CRISPR systems, advancing both the precision and reliability of gene editing technologies. In conclusion, this body of work highlights the convergence of chemistry, materials science, and molecular biology to create integrative solutions for gene editing. By combination of bioorthogonal chemistry, RNA engineering, and advanced materials, these advancements offer unprecedented accuracy and control for both fundamental research and therapeutic applications. These innovations not only advance genetic research but also contribute to developing safer and more effective gene editing strategies, moving us closer to realizing the full potential of these technologies.

摘要

综述

在过去十年中,RNA引导的基因编辑技术,特别是那些源自CRISPR系统的技术,彻底改变了生命科学,并为治疗创新带来了前所未有的机遇。尽管它们具有变革潜力,但要精确控制这些分子工具的活性和特异性仍然是一项艰巨的挑战,需要先进且创新的调控策略。我们和其他研究人员已经开发出了新方法,将化学智慧与生物正交技术相结合,以在CRISPR调控中实现显著的精确性。一项关键创新在于对引导RNA(gRNA)进行化学调控,这极大地扩展了CRISPR工具集。诸如CRISPR-ON和CRISPR-OFF开关等策略依赖于对gRNA的选择性化学掩蔽和解掩蔽。这些方法要么使用庞大的化学基团预先掩蔽RNA,要么使用较小、阻碍性较小的基团来微调其功能,随后通过生物正交反应来恢复或抑制活性。这些方法已被证明对于可控基因编辑和表达至关重要,解决了精确性、可逆性和动态调控方面的挑战。

与这些进展并行的是,介孔金属有机框架(MOF)的发展已成为RNA去保护和激活的一种有前景的解决方案。通过作为催化工具,MOF增强了CRISPR系统的多功能性和效率,将其应用拓展到了传统边界之外。此外,用于调节CRISPR-Cas9活性的新型小分子的合成标志着基因治疗方案发展中的一个关键里程碑。创新的RNA结构控制策略也已出现,特别是通过对G-四链体(G4)基序和G-G错配的工程改造。这些方法利用了工程化gRNA的结构倾向,使用小分子配体诱导特定的构象变化来调节CRISPR活性。无论是稳定G4形成还是促进G-G错配,这些策略都展示了基因编辑分子水平控制所需的精确性和复杂性。

为进一步加强这些创新,已开发出主客体化学和条件二酰化交联等技术来直接改变gRNA的结构和功能。这些方法为CRISPR系统提供了细致入微、可逆且安全的控制,提高了基因编辑技术的精确性和可靠性。总之,这项工作突出了化学、材料科学和分子生物学的融合,以创造用于基因编辑的综合解决方案。通过生物正交化学、RNA工程和先进材料相结合,这些进展为基础研究和治疗应用提供了前所未有的准确性和控制。这些创新不仅推动了基因研究,还有助于开发更安全、更有效的基因编辑策略,使我们更接近实现这些技术的全部潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验