Suppr超能文献

基于伪标签校正和不确定性去噪的弱监督细胞核分割

Weakly supervised nuclei segmentation based on pseudo label correction and uncertainty denoising.

作者信息

Pan Xipeng, Song Shilong, Liu Zhenbing, Wang Huadeng, Li Lingqiao, Lu Haoxiang, Lan Rushi, Luo Xiaonan

机构信息

Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.

Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangzhou, 510080, Guangdong, China.

出版信息

Artif Intell Med. 2025 Jun;164:103113. doi: 10.1016/j.artmed.2025.103113. Epub 2025 Mar 25.

Abstract

Nuclei segmentation plays a vital role in computer-aided histopathology image analysis. Numerous fully supervised learning approaches exhibit amazing performance relying on pathological image with precisely annotations. Whereas, it is difficult and time-consuming in accurate manual labeling on pathological images. Hence, this paper presents a two-stage weakly supervised model including coarse and fine phases, which can achieve nuclei segmentation on whole slide images using only point annotations. In the coarse segmentation step, Voronoi diagram and K-means cluster results are generated based on the point annotations to supervise the training network. In order to cope with the different imaging conditions, an image adaptive clustering pseudo label algorithm is proposed to adapt the color distribution of different images. A Multi-scale Feature Fusion (MFF) module is designed in the decoder to better fusion the feature outputs. Additionally, to reduce the interference of erroneous cluster label, an Exponential Moving Average for cluster label Correction (EMAC) strategy is proposed. After the first step, an uncertainty estimation pseudo label denoising strategy is introduced to denoise Voronoi diagram and adaptive cluster label. In the fine segmentation step, the optimized labels are used for training to obtain the final predicted probability map. Extensive experiments are performed on MoNuSeg and TNBC public benchmarks, which demonstrate our proposed method is superior to other existing nuclei segmentation methods based on point labels. Codes are available at: https://github.com/SSL-droid/WNS-PLCUD.

摘要

细胞核分割在计算机辅助组织病理学图像分析中起着至关重要的作用。许多完全监督学习方法依靠带有精确注释的病理图像展现出惊人的性能。然而,对病理图像进行准确的手动标注既困难又耗时。因此,本文提出了一种包括粗粒度和细粒度阶段的两阶段弱监督模型,该模型仅使用点注释就能在全切片图像上实现细胞核分割。在粗分割步骤中,基于点注释生成Voronoi图和K均值聚类结果来监督训练网络。为了应对不同的成像条件,提出了一种图像自适应聚类伪标签算法以适应不同图像的颜色分布。在解码器中设计了一个多尺度特征融合(MFF)模块以更好地融合特征输出。此外,为了减少错误聚类标签的干扰,提出了一种用于聚类标签校正的指数移动平均(EMAC)策略。在第一步之后,引入了一种不确定性估计伪标签去噪策略对Voronoi图和自适应聚类标签进行去噪。在细分割步骤中,使用优化后的标签进行训练以获得最终的预测概率图。在MoNuSeg和TNBC公共基准上进行了大量实验,结果表明我们提出的方法优于其他现有的基于点标签的细胞核分割方法。代码可在以下网址获取:https://github.com/SSL-droid/WNS-PLCUD

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验