Suppr超能文献

用于结构动力响应预测的有限元降阶模型驱动神经算子

FE reduced-order model-informed neural operator for structural dynamic response prediction.

作者信息

Yang Lai-Hao, Luo Xu-Liang, Yang Zhi-Bo, Nan Chang-Feng, Chen Xue-Feng, Sun Yu

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China.

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, PR China.

出版信息

Neural Netw. 2025 Aug;188:107437. doi: 10.1016/j.neunet.2025.107437. Epub 2025 Mar 25.

Abstract

Physics-Informed Neural Networks (PINN) have achieved remarkable advancements in recent years and have been extensively used in solving differential equations across various disciplines. However, when predicting structural dynamic responses, directly applying them to solve partial differential equations of structural dynamic models encounters challenges like inadequate result accuracy, inefficient training processes, and limited versatility. Furthermore, embedding large-scale structural dynamic models as physical constraints for neural networks can lead to poor trainability and low precision accuracy. To address the above issues, in this paper, we propose a novel FE reduced-order model-informed neural operator (FRINO) for structural dynamic response prediction with high precision, low computational cost, and broad versatility. Specifically, the Fourier neural operator (FNO) is employed to capture the dominant features of structural dynamic responses in the frequency domain, facilitating accurate and efficient solutions. Additionally, a reduced-order model derived using proper orthogonal decomposition is integrated to constrain the FNO. This ensures that the predicted solutions conform to physical differential equations, while also mitigating the high computational costs typically associated with large-dimensional physical equations. Special cantilever beam cases are designed to validate and evaluate the performance of the proposed FRINO. The comparative results demonstrate that FRINO can learn not only the responses of structural dynamic models but also the inherent dynamic characteristics of mechanical structure, allowing for precise predictions of structural responses under diverse unknown excitations. The results demonstrate that, compared with the PINN method, FRINO enhances prediction accuracy by up to two orders of magnitude and computation speed by up to three orders of magnitude. Besides, for practical use of FRINO, one should comprehensively consider the factors such as physical loss, training data resolution, and network width to obtain optimal performance of FRINO.

摘要

近年来,物理信息神经网络(PINN)取得了显著进展,并已广泛应用于跨学科求解微分方程。然而,在预测结构动力响应时,直接应用它们来求解结构动力模型的偏微分方程会遇到诸如结果精度不足、训练过程效率低下和通用性有限等挑战。此外,将大规模结构动力模型作为神经网络的物理约束可能导致可训练性差和精度低。为了解决上述问题,在本文中,我们提出了一种新颖的有限元降阶模型信息神经算子(FRINO),用于高精度、低计算成本和广泛通用性的结构动力响应预测。具体而言,采用傅里叶神经算子(FNO)在频域中捕捉结构动力响应的主要特征,以促进准确高效的求解。此外,集成了使用适当正交分解导出的降阶模型来约束FNO。这确保了预测解符合物理微分方程,同时也减轻了通常与大尺寸物理方程相关的高计算成本。设计了特殊的悬臂梁案例来验证和评估所提出的FRINO的性能。比较结果表明,FRINO不仅可以学习结构动力模型的响应,还可以学习机械结构的固有动力特性,从而能够精确预测各种未知激励下的结构响应。结果表明,与PINN方法相比,FRINO的预测精度提高了多达两个数量级,计算速度提高了多达三个数量级。此外,对于FRINO的实际应用,应综合考虑物理损失、训练数据分辨率和网络宽度等因素,以获得FRINO的最佳性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验