Sewwandi B V N, Kumarasinghe A R, Chen Xing, Bandara P M C J, Jayarathna L, Weerasooriya Rohan
Centre for Water Quality Research, National Institute of Fundamental Studies, Kandy, Sri Lanka.
Ministry of Water Supply, China and Sri Lanka Joint Research and Demonstration Centre for Water Technology, Kandy, Sri Lanka.
BMC Chem. 2025 Apr 2;19(1):89. doi: 10.1186/s13065-025-01460-y.
The single-stage floating catalyst chemical vapor deposition (SS-FCCVD) method using the ferrocene route (e.g., ferrocene: catalyst and camphor: carbon source) offers significant but largely unexplored versatility for the production of carbon nanotubes (CNTs). Our study used the SS-FCCVD method to grow vertically aligned carbon nanotubes (VACNTs) on an alumina ceramic reactor surface at 850 °C under a nitrogen atmosphere. The experimental setup included a camphor/ferrocene ratio of 20:1 and a specific temperature gradient of 21 °C/cm. To minimize the catalyst agglomeration, we positioned the chemical sources at a distance of 15 cm from the inlet of the CVD reactor. Alumina ceramic surfaces proved highly effective for VACNT production, showing minimal agglomeration of iron particles, facilitating the formation of reactive sites essential for VACNT growth. The VACNTs grew readily on alumina ceramic surfaces, forming bundled, forest-like structures with segment lengths up to 1.2 mm and diameters around 60 nm. When compared to conventional substrates, the surface area of the reaction zone substrate increases by up to 705%, resulting in a significant boost in VACNT yield. A detailed evaluation of characterization results confirmed the growth mechanism and behavior of Fe particles such that carbon-encapsulated particles are attached to the inner and outer surfaces of the CNTs. These VACNT surfaces exhibited superhydrophobic properties, similar to the lotus leaf effect. The synthesized iron-dispersed CNTs exhibit exceptional efficiency in Chromium (VI) removal, with an impressive adsorption capacity of 0.206 mmol/m², positioning them as a promising solution for effective water treatment. This scalable SS-FCCVD method using the ferrocene route achieved the longest VACNTs reported to date.
采用二茂铁路线(如二茂铁:催化剂,樟脑:碳源)的单级浮动催化剂化学气相沉积(SS-FCCVD)方法,在碳纳米管(CNT)的生产方面具有显著但尚未充分探索的通用性。我们的研究采用SS-FCCVD方法,在氮气气氛下于850℃在氧化铝陶瓷反应器表面生长垂直排列的碳纳米管(VACNT)。实验装置中二茂铁与樟脑的比例为20:1,特定温度梯度为21℃/cm。为了使催化剂团聚最小化,我们将化学源放置在距CVD反应器入口15 cm处。氧化铝陶瓷表面对VACNT的生产证明非常有效,铁颗粒的团聚最少,有助于形成VACNT生长所必需的反应位点。VACNT很容易在氧化铝陶瓷表面生长,形成束状的、类似森林的结构,段长可达1.2 mm,直径约为60 nm。与传统基板相比,反应区基板的表面积增加了705%,导致VACNT产量显著提高。对表征结果的详细评估证实了铁颗粒的生长机制和行为,使得碳包覆颗粒附着在CNT的内表面和外表面。这些VACNT表面表现出超疏水特性,类似于荷叶效应。合成的铁分散CNT在去除铬(VI)方面表现出卓越的效率,吸附容量高达0.206 mmol/m²,使其成为有效水处理的有前景的解决方案。这种采用二茂铁路线的可扩展SS-FCCVD方法制备出了迄今为止报道的最长的VACNT。