Daneffel Luana, Rukwied Roman, Schmelz Martin, Ruppen Wilhelm, Schneider Tobias
Clinic for Anaesthesia, Intermediate Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital of Basel, Basel, Switzerland.
Department of Experimental Pain Research, MCTN, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
Front Pain Res (Lausanne). 2025 Mar 19;6:1556429. doi: 10.3389/fpain.2025.1556429. eCollection 2025.
"Silent" C-nociceptors are crucial for inducing the axon reflex erythema in humans and may also contribute to spinal sensitization such as secondary hyperalgesia. Electrical slow depolarizing stimulation paradigms activate unmyelinated C-fibers [25 ms half-sine (HS) profile] whereas A-fibers are stimulated by 500 µs rectangular (R) pulses. We therefore expect to provoke larger areas of axon-reflex flare (silent nociceptor activation) and secondary hyperalgesia to HS stimuli. We compared axon-reflex erythema and secondary mechanical hyperalgesia areas induced by intracutaneous electrical HS and R stimuli using stimulation intensities that induced pain ratings of 3 and 6 on a numeric rating scale (NRS 0-10) in 24 healthy volunteers. Slowly depolarizing C-fiber stimulation was linked to lower current intensities required to induce pain (NRS 6: HS 3.6 vs. R 9.2 mA, = 0.001) and resulted in larger axon reflex erythema for high stimulus intensities (AUC: NRS 6, 320.7 vs. 234.1 cm⋅min, = 0.015; NRS 3, 79.1 vs. 51.0 cm⋅min; = 0.114). Preferential C-fiber stimulation indicated a correlation of axon-reflex erythema with the areas of secondary mechanical hyperalgesia (NRS 6: = 0.21, = 0.036; NRS 3: = 0.48, = 0.0016). In contrast, the mean area of secondary mechanical hyperalgesia did not differ between HS and R [AUC: NRS 6, 1,555 (HS) vs. 1,585 cm⋅min (R), = 0.893; NRS 3, 590 (HS) vs. 449 cm⋅min (R), = 0.212] albeit it developed faster during HS. Our data confirm that silent nociceptors provoke the axon reflex erythema, but their role in secondary hyperalgesia appears to be less crucial. NCT0544026.
“沉默”的C类伤害感受器对于诱发人类的轴突反射性红斑至关重要,也可能导致脊髓敏化,如继发性痛觉过敏。缓慢去极化电刺激模式可激活无髓鞘的C类纤维[25毫秒半正弦(HS)波形],而A类纤维则由500微秒矩形(R)脉冲刺激。因此,我们预计HS刺激会引发更大面积的轴突反射性潮红(沉默伤害感受器激活)和继发性痛觉过敏。我们在24名健康志愿者中,使用能在数字疼痛评分量表(NRS 0 - 10)上诱发3分和6分疼痛评分的刺激强度,比较了皮内电HS和R刺激诱发的轴突反射性红斑和继发性机械性痛觉过敏区域。缓慢去极化的C类纤维刺激与诱发疼痛所需的较低电流强度相关(NRS 6:HS为3.6毫安,R为9.2毫安,P = 0.001),并且在高刺激强度下会导致更大面积的轴突反射性红斑(曲线下面积:NRS 6时,HS为320.7平方厘米·分钟,R为234.1平方厘米·分钟,P = 0.015;NRS 3时,HS为79.1平方厘米·分钟,R为51.0平方厘米·分钟,P = 0.114)。优先刺激C类纤维表明轴突反射性红斑与继发性机械性痛觉过敏区域存在相关性(NRS 6:r = 0.21,P = 0.036;NRS 3:r = 0.48,P = 0.0016)。相比之下,HS和R刺激后的继发性机械性痛觉过敏平均面积没有差异[曲线下面积:NRS 6时,HS为1555平方厘米·分钟(HS),R为1585平方厘米·分钟(R),P = 0.893;NRS 3时,HS为590平方厘米·分钟(HS),R为449平方厘米·分钟(R),P = 0.212],尽管在HS刺激过程中其发展更快。我们的数据证实,沉默伤害感受器会引发轴突反射性红斑,但其在继发性痛觉过敏中的作用似乎不那么关键。 临床试验编号:NCT0544026