Suppr超能文献

在常规电子健康记录中捕捉患有多种长期疾病的人的影响——翻译中丢失了什么?

Capturing the human impact of living with multiple long-term conditions in routine electronic health records - lost in translation?

作者信息

Fraser Simon D S, Holland Emilia, Laidlaw Lynn, Francis Nick A, Macdonald Sara, Mair Frances S, Alwan Nisreen A, Boniface Michael, Hoyle Rebecca B, Fair Nic, Dylag Jakub J, Shiranirad Mozhdeh, Chiovoloni Roberta, Stannard Sebastian, Poole Robin, Akbari Ashley, Ashworth Mark, Dregan Alex

机构信息

School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK.

University Hospital Southampton NHS Foundation Trust, Southampton, UK.

出版信息

J Multimorb Comorb. 2025 Apr 1;15:26335565251329869. doi: 10.1177/26335565251329869. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Living with multiple long-term conditions (MLTCs) involves 'work'. A recent qualitative synthesis identified eight patient-centred work themes: 'learning and adapting', 'accumulation and complexity', 'investigation and monitoring', 'health service and administration' and 'symptom', 'emotional', 'medication' and 'financial' work. These themes may be underrepresented in electronic health records (EHRs). This study aimed to evaluate the representation of these themes and their constituent concepts in EHR data in a general population and among individuals with history of a mental health condition.

METHODS

Using the OpenCodelists builder from OpenSAFELY, clinical code lists corresponding to work concepts were developed using Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) and validated by two clinicians. Additional concepts were engineered within the Clinical Practice Research Datalink (CPRD) and the Secure Anonymised Information Linkage (SAIL) Databank. We analysed trends in recording rates over 20 years across a SAIL general population cohort (n=5,180,602) and a CPRD cohort comprising individuals with a mental health diagnosis (n=3,616,776) and matched controls (n=4,457,225).

RESULTS

55 code lists and seven engineered concepts were developed across the themes. The proportion of patients with codes related to 'investigation and monitoring' exceeded 40%, while 'accumulation and complexity' and 'financial work' were poorly represented (<2% and <1% of the study population respectively). Recording was generally higher among individuals with a mental health diagnosis history.

CONCLUSION

While EHR data captures some aspects of MLTC work, patient-centred concepts are under-represented. Future research should explore reasons behind variability in coding practices, and innovative methods for enriching structured records with patient-centred data.

摘要

背景

患有多种长期疾病(MLTCs)意味着要付出“努力”。最近的一项定性综合研究确定了八个以患者为中心的工作主题:“学习与适应”“积累与复杂性”“调查与监测”“卫生服务与管理”以及“症状”“情感”“药物治疗”和“财务”工作。这些主题在电子健康记录(EHRs)中可能未得到充分体现。本研究旨在评估这些主题及其构成概念在普通人群和有精神健康疾病史个体的EHR数据中的呈现情况。

方法

使用OpenSAFELY的OpenCodelists构建器,利用医学系统命名法临床术语(SNOMED CT)开发了与工作概念相对应的临床代码列表,并由两名临床医生进行了验证。在临床实践研究数据链(CPRD)和安全匿名信息链接(SAIL)数据库中设计了其他概念。我们分析了SAIL普通人群队列(n = 5,180,602)以及由有精神健康诊断的个体(n = 3,616,776)和匹配对照组(n = 4,457,225)组成的CPRD队列中20年来记录率的趋势。

结果

围绕这些主题共开发了55个代码列表和七个设计概念。与“调查与监测”相关代码的患者比例超过40%,而“积累与复杂性”和“财务工作”的体现不足(分别占研究人群的<2%和<1%)。有精神健康诊断史的个体的记录率总体上更高。

结论

虽然EHR数据捕捉到了MLTC工作的一些方面,但以患者为中心的概念未得到充分体现。未来的研究应探索编码实践差异背后的原因,以及用以患者为中心的数据丰富结构化记录的创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402b/11963726/ae8332cf5a96/10.1177_26335565251329869-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验