Suppr超能文献

精神健康记录中记录疼痛的分布:一项基于自然语言处理的研究。

Distributions of recorded pain in mental health records: a natural language processing based study.

机构信息

Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK

Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.

出版信息

BMJ Open. 2024 Apr 19;14(4):e079923. doi: 10.1136/bmjopen-2023-079923.

Abstract

OBJECTIVE

The objective of this study is to determine demographic and diagnostic distributions of physical pain recorded in clinical notes of a mental health electronic health records database by using natural language processing and examine the overlap in recorded physical pain between primary and secondary care.

DESIGN, SETTING AND PARTICIPANTS: The data were extracted from an anonymised version of the electronic health records of a large secondary mental healthcare provider serving a catchment of 1.3 million residents in south London. These included patients under active referral, aged 18+ at the index date of 1 July 2018 and having at least one clinical document (≥30 characters) between 1 July 2017 and 1 July 2019. This cohort was compared with linked primary care records from one of the four local government areas.

OUTCOME

The primary outcome of interest was the presence of recorded physical pain within the clinical notes of the patients, not including psychological or metaphorical pain.

RESULTS

A total of 27 211 patients were retrieved. Of these, 52% (14,202) had narrative text containing relevant mentions of physical pain. Older patients (OR 1.17, 95% CI 1.15 to 1.19), females (OR 1.42, 95% CI 1.35 to 1.49), Asians (OR 1.30, 95% CI 1.16 to 1.45) or black (OR 1.49, 95% CI 1.40 to 1.59) ethnicities, living in deprived neighbourhoods (OR 1.64, 95% CI 1.55 to 1.73) showed higher odds of recorded pain. Patients with severe mental illnesses were found to be less likely to report pain (OR 0.43, 95% CI 0.41 to 0.46, p<0.001). 17% of the cohort from secondary care also had records from primary care.

CONCLUSION

The findings of this study show sociodemographic and diagnostic differences in recorded pain. Specifically, lower documentation across certain groups indicates the need for better screening protocols and training on recognising varied pain presentations. Additionally, targeting improved detection of pain for minority and disadvantaged groups by care providers can promote health equity.

摘要

目的

本研究旨在通过自然语言处理确定精神卫生电子健康记录数据库临床记录中记录的身体疼痛的人口统计学和诊断分布,并检查初级保健和二级保健记录中身体疼痛的重叠情况。

设计、地点和参与者:数据取自伦敦南部一个拥有 130 万居民的大型二级精神保健服务提供者的匿名电子健康记录。这些患者在索引日期 2018 年 7 月 1 日之前接受积极转诊,年龄在 18 岁及以上,并在 2017 年 7 月 1 日至 2019 年 7 月 1 日期间至少有一份临床记录(≥30 个字符)。该队列与其中一个地方政府区域的四个初级保健记录相链接。

主要结果

主要研究结果是患者临床记录中存在记录的身体疼痛,不包括心理或隐喻性疼痛。

结果

共检索到 27211 名患者。其中,52%(14202 名)的患者的叙事文本中包含与身体疼痛相关的提及。年龄较大的患者(OR 1.17,95%CI 1.15-1.19)、女性(OR 1.42,95%CI 1.35-1.49)、亚洲人(OR 1.30,95%CI 1.16-1.45)或黑人(OR 1.49,95%CI 1.40-1.59)种族、生活在贫困社区(OR 1.64,95%CI 1.55-1.73)的患者出现疼痛的几率更高。患有严重精神疾病的患者报告疼痛的可能性较低(OR 0.43,95%CI 0.41-0.46,p<0.001)。来自二级保健的队列中有 17%的患者也有来自初级保健的记录。

结论

本研究的结果表明,记录的疼痛存在社会人口统计学和诊断差异。具体而言,某些人群的记录较少表明需要更好的筛查方案和培训,以识别各种疼痛表现。此外,通过医疗服务提供者针对少数民族和弱势群体改善疼痛检测,可以促进健康公平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6562/11033644/a40b4699de0f/bmjopen-2023-079923f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验