Suppr超能文献

用于从电子健康记录数据中获取可计算临床表型的SNOMED CT概念层次结构:内涵值集与外延值集的比较

SNOMED CT Concept Hierarchies for Computable Clinical Phenotypes From Electronic Health Record Data: Comparison of Intensional Versus Extensional Value Sets.

作者信息

Chu Ling, Kannan Vaishnavi, Basit Mujeeb A, Schaeflein Diane J, Ortuzar Adolfo R, Glorioso Jimmie F, Buchanan Joel R, Willett Duwayne L

机构信息

University of Texas Southwestern Medical Center, Dallas, TX, United States.

University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.

出版信息

JMIR Med Inform. 2019 Jan 16;7(1):e11487. doi: 10.2196/11487.

Abstract

BACKGROUND

Defining clinical phenotypes from electronic health record (EHR)-derived data proves crucial for clinical decision support, population health endeavors, and translational research. EHR diagnoses now commonly draw from a finely grained clinical terminology-either native SNOMED CT or a vendor-supplied terminology mapped to SNOMED CT concepts as the standard for EHR interoperability. Accordingly, electronic clinical quality measures (eCQMs) increasingly define clinical phenotypes with SNOMED CT value sets. The work of creating and maintaining list-based value sets proves daunting, as does insuring that their contents accurately represent the clinically intended condition.

OBJECTIVE

The goal of the research was to compare an intensional (concept hierarchy-based) versus extensional (list-based) value set approach to defining clinical phenotypes using SNOMED CT-encoded data from EHRs by evaluating value set conciseness, time to create, and completeness.

METHODS

Starting from published Centers for Medicare and Medicaid Services (CMS) high-priority eCQMs, we selected 10 clinical conditions referenced by those eCQMs. For each, the published SNOMED CT list-based (extensional) value set was downloaded from the Value Set Authority Center (VSAC). Ten corresponding SNOMED CT hierarchy-based intensional value sets for the same conditions were identified within our EHR. From each hierarchy-based intensional value set, an exactly equivalent full extensional value set was derived enumerating all included descendant SNOMED CT concepts. Comparisons were then made between (1) VSAC-downloaded list-based (extensional) value sets, (2) corresponding hierarchy-based intensional value sets for the same conditions, and (3) derived list-based (extensional) value sets exactly equivalent to the hierarchy-based intensional value sets. Value set conciseness was assessed by the number of SNOMED CT concepts needed for definition. Time to construct the value sets for local use was measured. Value set completeness was assessed by comparing contents of the downloaded extensional versus intensional value sets. Two measures of content completeness were made: for individual SNOMED CT concepts and for the mapped diagnosis clinical terms available for selection within the EHR by clinicians.

RESULTS

The 10 hierarchy-based intensional value sets proved far simpler and faster to construct than exactly equivalent derived extensional value set lists, requiring a median 3 versus 78 concepts to define and 5 versus 37 minutes to build. The hierarchy-based intensional value sets also proved more complete: in comparison, the 10 downloaded 2018 extensional value sets contained a median of just 35% of the intensional value sets' SNOMED CT concepts and 65% of mapped EHR clinical terms.

CONCLUSIONS

In the EHR era, defining conditions preferentially should employ SNOMED CT concept hierarchy-based (intensional) value sets rather than extensional lists. By doing so, clinical guideline and eCQM authors can more readily engage specialists in vetting condition subtypes to include and exclude, and streamline broad EHR implementation of condition-specific decision support promoting guideline adherence for patient benefit.

摘要

背景

从电子健康记录(EHR)衍生数据中定义临床表型对于临床决策支持、人群健康事业和转化研究至关重要。EHR诊断现在通常采用精细的临床术语——要么是原生的SNOMED CT,要么是映射到SNOMED CT概念的供应商提供的术语,作为EHR互操作性的标准。因此,电子临床质量指标(eCQM)越来越多地使用SNOMED CT值集来定义临床表型。创建和维护基于列表的值集的工作艰巨,确保其内容准确代表临床预期情况同样如此。

目的

该研究的目标是通过评估值集的简洁性、创建时间和完整性,比较使用EHR中SNOMED CT编码数据定义临床表型的内涵式(基于概念层次结构)与外延式(基于列表)值集方法。

方法

从已发布的医疗保险和医疗补助服务中心(CMS)高优先级eCQM开始,我们选择了这些eCQM引用的10种临床病症。对于每种病症,从值集管理中心(VSAC)下载已发布的基于SNOMED CT列表的(外延式)值集。在我们的EHR中确定了针对相同病症的10个相应的基于SNOMED CT层次结构的内涵式值集。从每个基于层次结构的内涵式值集中,导出一个完全等效的完整外延式值集,枚举所有包含的后代SNOMED CT概念。然后对以下三者进行比较:(1)从VSAC下载的基于列表的(外延式)值集,(2)针对相同病症的相应基于层次结构的内涵式值集,以及(3)与基于层次结构的内涵式值集完全等效的导出的基于列表的(外延式)值集。通过定义所需的SNOMED CT概念数量评估值集的简洁性。测量构建本地使用的值集的时间。通过比较下载的外延式与内涵式值集的内容评估值集的完整性。进行了两种内容完整性测量:针对单个SNOMED CT概念以及针对临床医生在EHR中可选择的映射诊断临床术语。

结果

事实证明,10个基于层次结构的内涵式值集比完全等效的导出外延式值集列表构建起来要简单得多、速度快得多,定义时分别需要中位数为3个概念与78个概念,构建时间分别为5分钟与37分钟。基于层次结构的内涵式值集也更完整:相比之下,10个下载的2018年外延式值集仅包含内涵式值集的SNOMED CT概念的中位数的35%以及映射的EHR临床术语的65%。

结论

在EHR时代,优先定义病症应采用基于SNOMED CT概念层次结构的(内涵式)值集而非外延式列表。这样做,临床指南和eCQM作者可以更轻松地让专家参与审查要纳入和排除的病症亚型,并简化针对特定病症的决策支持在EHR中的广泛实施,促进遵循指南以造福患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d00/6351992/8c16c7b99c7e/medinform_v7i1e11487_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验