Yuan Ting, Wu Meiqian, Zhu Chaonan, Yu Hao, Pham Minh Duc, Bottermann Katharina, Mao Yijie, Wang Yue, Langner Mathias, Peitzsch Mirko, Das Arka Provo, Kauferstein Silke, Ward Jonathan, Mirtschink Peter, Zeiher Andreas Michael, Dimmeler Stefanie, Krishnan Jaya
Department of Medicine, Cardiology, Goethe University Hospital, 60590, Frankfurt, Germany.
Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, 60590, Frankfurt am Main, Germany.
Adv Sci (Weinh). 2025 Jun;12(21):e2414455. doi: 10.1002/advs.202414455. Epub 2025 Apr 3.
Despite its promise, cardiac regenerative therapy remains clinically elusive due to the difficulty of spatio-temporal control of proliferative induction, and the need to coordinately reprogram multiple regulatory pathways to overcome the strict post-mitotic state of human adult cardiomyocytes. To address this unmet therapeutic need, a combinatorial miRNA interference screen is performed specifically targeting cardiac-predominant miRNAs regulating key aspects of cardiomyocyte mitotic induction to cell-cycle completion in neonatal rat cardiomyocytes. In doing so combinatorial interference of miRNA-1a and miRNA-15b (LNA-1a/15b) is identified as drivers of adult cardiomyocyte proliferation. Due to miRNA-1a/15b function on multiple processes modulating adult cardiomyocyte mitosis, its inhibition augmented adult cardiomyocyte cell-cycle completion and daughter cell formation, and improved contractility in 3D human cardiac organoids, and in a mouse model of ST-segment elevation myocardial infarction. Due to the cardiac-restricted pattern of miRNA-1a/15b expression, this strategy provides a feasible means for specific cardiomyocyte proliferative induction with minimal risk of neoplasm formation and off-target toxicity. The approach further highlights an underutilized therapeutic strategy for simultaneous co-regulation of multiple disease pathways through combinatorial interference of miRNAs.
尽管心脏再生疗法前景广阔,但由于难以对增殖诱导进行时空控制,且需要协调重编程多个调控通路以克服人类成年心肌细胞严格的有丝分裂后状态,该疗法在临床上仍难以实现。为满足这一未被满足的治疗需求,我们进行了一项组合式微小RNA干扰筛选,专门针对在新生大鼠心肌细胞中调节心肌细胞有丝分裂诱导至细胞周期完成关键环节的心脏主导型微小RNA。在此过程中,微小RNA - 1a和微小RNA - 15b的组合干扰(锁核酸 - 1a/15b)被确定为成年心肌细胞增殖的驱动因素。由于微小RNA - 1a/15b在调节成年心肌细胞有丝分裂的多个过程中发挥作用,其抑制作用增强了成年心肌细胞的细胞周期完成和子细胞形成,并改善了三维人类心脏类器官以及ST段抬高型心肌梗死小鼠模型中的收缩性。由于微小RNA - 1a/15b表达具有心脏限制性模式,该策略为特异性诱导心肌细胞增殖提供了一种可行方法,将肿瘤形成风险和脱靶毒性降至最低。该方法进一步突出了一种未得到充分利用的治疗策略,即通过微小RNA的组合干扰同时共同调节多种疾病通路。