Suppr超能文献

代谢决定心肌细胞增殖。

Metabolic Determinants of Cardiomyocyte Proliferation.

机构信息

Division of Cardiovascular Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA.

Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.

出版信息

Stem Cells. 2022 May 27;40(5):458-467. doi: 10.1093/stmcls/sxac016.

Abstract

The adult mammalian heart is recalcitrant to regeneration after injury, in part due to the postmitotic nature of cardiomyocytes. Accumulating evidence suggests that cardiomyocyte proliferation in fetal or neonatal mammals and in regenerative non-mammalian models depends on a conducive metabolic state. Results from numerous studies in adult hearts indicate that conditions of relatively low fatty acid oxidation, low reactive oxygen species generation, and high glycolysis are required for induction of cardiomyocyte proliferation. Glycolysis appears particularly important because it provides branchpoint metabolites for several biosynthetic pathways that are essential for synthesis of nucleotides and nucleotide sugars, amino acids, and glycerophospholipids, all of which are required for daughter cell formation. In addition, the proliferative cardiomyocyte phenotype is supported in part by relatively low oxygen tensions and through the actions of critical transcription factors, coactivators, and signaling pathways that promote a more glycolytic and proliferative cardiomyocyte phenotype, such as hypoxia inducible factor 1α (Hif1α), Yes-associated protein (Yap), and ErbB2. Interventions that inhibit glycolysis or its integrated biosynthetic pathways almost universally impair cardiomyocyte proliferative capacity. Furthermore, metabolic enzymes that augment biosynthetic capacity such as phosphoenolpyruvate carboxykinase 2 and pyruvate kinase M2 appear to be amplifiers of cardiomyocyte proliferation. Collectively, these studies suggest that acquisition of a glycolytic and biosynthetic metabolic phenotype is a sine qua non of cardiomyocyte proliferation. Further knowledge of the regulatory mechanisms that control substrate partitioning to coordinate biosynthesis with energy provision could be leveraged to prompt or augment cardiomyocyte division and to promote cardiac repair.

摘要

成年哺乳动物的心脏在受伤后很难再生,部分原因是心肌细胞的有丝分裂后特性。越来越多的证据表明,胎生或新生哺乳动物以及在再生非哺乳动物模型中的心肌细胞增殖取决于有利的代谢状态。许多成年心脏研究的结果表明,相对低的脂肪酸氧化、低活性氧生成和高糖酵解的条件是诱导心肌细胞增殖所必需的。糖酵解似乎尤为重要,因为它为几种生物合成途径提供了分支代谢物,这些途径对于核苷酸和核苷酸糖、氨基酸和甘油磷脂的合成至关重要,所有这些都是形成子细胞所必需的。此外,增殖的心肌细胞表型部分受到相对低氧张力的支持,并通过关键转录因子、共激活因子和信号通路的作用来支持,这些通路促进了更具糖酵解和增殖性的心肌细胞表型,例如缺氧诱导因子 1α(Hif1α)、Yes 相关蛋白(Yap)和 ErbB2。抑制糖酵解或其整合生物合成途径的干预几乎普遍会损害心肌细胞的增殖能力。此外,增强生物合成能力的代谢酶,如磷酸烯醇丙酮酸羧激酶 2 和丙酮酸激酶 M2,似乎是心肌细胞增殖的放大器。综上所述,这些研究表明,获得糖酵解和生物合成代谢表型是心肌细胞增殖的必要条件。进一步了解控制底物分配以协调生物合成与能量供应的调节机制,可以用来促使或增强心肌细胞分裂,并促进心脏修复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ec/9199846/825a76202acb/sxac016_fig4.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验