Ghosh Arnab, Mora Perez Carlos, Brosseau Patrick, Dirin Dmitry N, Prezhdo Oleg V, Kovalenko Maksym V, Kambhampati Patanjali
Department of Chemistry, McGill University, Montreal H3A 0B8, Canada.
Department of Chemistry, University of Southern California, Los Angeles 90089-0482, United States.
ACS Nano. 2025 Apr 15;19(14):14499-14508. doi: 10.1021/acsnano.5c03944. Epub 2025 Apr 3.
Hot exciton relaxation dynamics is one of the main processes in quantum dots (QD), conferring their functions in optoelectronic devices spanning photovoltaics and solar fuel generation to light emitting diodes, lasers, and quantum light sources. The challenge has been to monitor energy relaxation dynamics in parallel with resolution of excitation or excess energy. Here, we exploit the unique capacity of Coherent Multi-Dimensional Spectroscopy (CMDS) to provide the first observation of the hot exciton cooling landscape of a large size range of CsPbBr lead halide perovskite QD, notable for their impact on optoelectronic devices, as well as their strong and unique exciton-lattice coupling. The CMDS data reveal that the hot exciton relaxation landscape is a complex function of the energy. Ab initio quantum dynamics simulations rationalize the observed behavior through energy dependent nonadiabatic exciton-phonon coupling. This first observation of cooling landscapes in QD suggests that materials science that either accelerates or slows hot exciton cooling can better be understood as a landscape to optimize for applications.
热激子弛豫动力学是量子点(QD)中的主要过程之一,赋予了它们在光电器件中的功能,这些光电器件涵盖了从光伏和太阳能燃料生成到发光二极管、激光器和量子光源等领域。挑战在于在监测能量弛豫动力学的同时,还要分辨激发或多余能量。在这里,我们利用相干多维光谱(CMDS)的独特能力,首次观察到了一系列大尺寸CsPbBr卤化铅钙钛矿量子点的热激子冷却态势,这些量子点因其对光电器件的影响以及其强烈且独特的激子-晶格耦合而备受关注。CMDS数据表明,热激子弛豫态势是能量的复杂函数。从头算量子动力学模拟通过与能量相关的非绝热激子-声子耦合,使观察到的行为合理化。对量子点中冷却态势的这一首次观察表明,加速或减缓热激子冷却的材料科学可以更好地理解为一种为应用而优化的态势。