Stippell Elizabeth, Mora Perez Carlos, Favate Nicholas, Huang Libai, Li Christina W, Prezhdo Oleg V
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
J Phys Chem Lett. 2025 Jun 12;16(23):5666-5673. doi: 10.1021/acs.jpclett.5c01307. Epub 2025 May 31.
Ligand choice in nanoparticle systems is vital for developing efficient materials and enhancing electronic and chemical properties. Focusing on CsPbBr, we demonstrate a strategy for modifying the electronic properties of lead halide perovskites through a systematic computational study on ligands with varying binding motifs, sizes, bridge lengths, π-electron conjugation, and electron withdrawing and donating groups. The calculations are benchmarked against experimental data. Choosing a ligand's π-electron system and binding group, followed by tuning the ligand's properties with substituents to the π-system, allows one to introduce ligand electronic states into the perovskite system's bands, close to band edges, and inside the material's fundamental band gap. One can also design surface states by inducing local distortions at the binding site, which can be tuned by altering the binding group of the ligand. Extension of a material's frontier orbitals onto ligands and the creation of surface states make charges available for transport and chemical reactivity, while avoiding charge trapping. In contrast, midgap ligand states trap charges permanently. Large ligands with high coverages interact among themselves, influencing ligand electronic properties and binding. Carboxylate tends to bind more strongly than the ammonium group. Electronegative oxygens in the carboxylate binding group and electron withdrawing substituents bound to the π-system lower ligand orbital energies relative to perovskite states. The reported theoretical analysis guides experimental design of perovskite-ligand systems for optoelectronic, energy, and quantum information applications.
纳米颗粒系统中的配体选择对于开发高效材料以及增强电子和化学性质至关重要。以CsPbBr为例,我们通过对具有不同结合基序、尺寸、桥连长度、π电子共轭以及吸电子和供电子基团的配体进行系统的计算研究,展示了一种调节卤化铅钙钛矿电子性质的策略。计算结果以实验数据为基准进行验证。选择配体的π电子体系和结合基团,然后通过对π体系的取代基来调节配体的性质,能够将配体的电子态引入到钙钛矿体系的能带中,靠近能带边缘以及材料的基本带隙内。还可以通过在结合位点诱导局部畸变来设计表面态,这可以通过改变配体的结合基团来调节。将材料的前沿轨道扩展到配体上并创建表面态,使得电荷可用于传输和化学反应,同时避免电荷俘获。相比之下,带隙中的配体态会永久俘获电荷。高覆盖率的大配体之间会相互作用,影响配体的电子性质和结合。羧酸盐的结合往往比铵基团更强。羧酸盐结合基团中的电负性氧以及与π体系相连的吸电子取代基会使配体轨道能量相对于钙钛矿态降低。所报道的理论分析为用于光电子、能源和量子信息应用的钙钛矿 - 配体系统的实验设计提供了指导。