Suppr超能文献

一种用于预测小儿连续性肾脏替代治疗中透析期间低血压的机器学习模型。

A machine learning model to predict intradialytic hypotension in pediatric continuous kidney replacement therapy.

作者信息

Wang Jian-An, Hu Hsiang-Wei, Chiou Yuan-Yow, Chen Kuan-Yu, Hsueh Chun-Chuan, Chen Chih-Chia

机构信息

Acusense Biomedical Technology Corp, Tainan, Taiwan.

Department of Information and Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.

出版信息

Pediatr Nephrol. 2025 Apr 3. doi: 10.1007/s00467-025-06764-8.

Abstract

BACKGROUND

Intradialytic hypotension (IDH) is associated with mortality in adults undergoing intermittent hemodialysis, but this relationship is unclear in critically ill children receiving continuous kidney replacement therapy (CKRT). We aim to evaluate the relationship between IDH and hospital mortality and if pressure data from dialysis machines could predict IDH.

METHODS

We conducted a retrospective cohort study in a tertiary pediatric intensive care unit and NICU from December 2019 to July 2022, including 23 patients across 38 admissions (median age 10 years).

RESULTS

IDH proportion was significantly associated with mortality (risk ratio [RR]: 4.40, 95% confidence interval [CI]: 1.22-15.90, p = 0.02). Random Forest models using Entropy or Gini criteria demonstrated high sensitivity. The CatBoost model achieved the highest average F1-score and area under the receiver operating characteristic (ROC) curve (AUC) (88.18% and 86.6% with and without dialysis settings, respectively). Local Interpretable Model-agnostic Explanations (LIME) indicated that dialysis machine-derived time-series pressure parameters were critical predictive features for IDH, whereas blood pressure-related variables were not among the top predictors.

CONCLUSIONS

Dialysis machine-derived pressure parameters may serve as effective predictive markers for IDH, which is associated with increased mortality. These findings support the potential of integrating pressure data in the early detection and management of IDH in pediatric CKRT patients.

摘要

背景

透析期间低血压(IDH)与接受间歇性血液透析的成年人死亡率相关,但在接受持续肾脏替代治疗(CKRT)的危重症儿童中,这种关系尚不清楚。我们旨在评估IDH与医院死亡率之间的关系,以及透析机的压力数据是否可以预测IDH。

方法

我们在一家三级儿科重症监护病房和新生儿重症监护病房进行了一项回顾性队列研究,研究时间为2019年12月至2022年7月,包括23例患者的38次入院(中位年龄10岁)。

结果

IDH比例与死亡率显著相关(风险比[RR]:4.40,95%置信区间[CI]:1.22 - 15.90,p = 0.02)。使用熵或基尼系数标准的随机森林模型显示出高敏感性。CatBoost模型获得了最高的平均F1分数和受试者工作特征(ROC)曲线下面积(AUC)(有和没有透析设置时分别为88.18%和86.6%)。局部可解释模型无关解释(LIME)表明,透析机得出的时间序列压力参数是IDH的关键预测特征,而血压相关变量不在顶级预测因素之列。

结论

透析机得出的压力参数可能作为IDH的有效预测标志物,IDH与死亡率增加相关。这些发现支持了在儿科CKRT患者中整合压力数据用于IDH早期检测和管理的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验