Li Yao, Liu Xiaobin, Guo Lidong, Han Kai, Fang Shuangsang, Wan Xinjiang, Wang Dantong, Xu Xun, Jiang Ling, Fan Guangyi, Xu Mengyang
BGI Research, Sanya 572025, China; BGI Research, Qingdao 266555, China.
BGI Research, Qingdao 266555, China.
Cell Syst. 2025 Apr 16;16(4):101243. doi: 10.1016/j.cels.2025.101243. Epub 2025 Apr 2.
Cells spatially organize into distinct cell types or functional domains through localized gene regulatory networks. However, current spatially resolved transcriptomics analyses fail to integrate spatial constraints and proximal cell influences, limiting the mechanistic understanding of tissue organization. Here, we introduce SpaGRN, a statistical framework that reconstructs cell-type- or functional-domain-specific, dynamic, and spatial regulons by coupling intracellular spatial regulatory causality with extracellular signaling path information. Benchmarking across synthetic and real datasets demonstrates SpaGRN's superior precision over state-of-the-art tools in identifying context-dependent regulons. Applied to diverse spatially resolved transcriptomics platforms (Stereo-seq, STARmap, MERFISH, CosMx, Slide-seq, and 10x Visium), complex cancerous samples, and 3D datasets of developing Drosophila embryos and larvae, SpaGRN not only provides a versatile toolkit for decoding receptor-mediated spatial regulons but also reveals spatiotemporal regulatory mechanisms underlying organogenesis and inflammation.
细胞通过局部基因调控网络在空间上组织成不同的细胞类型或功能域。然而,当前的空间分辨转录组学分析未能整合空间限制和邻近细胞的影响,限制了对组织组织机制的理解。在这里,我们介绍了SpaGRN,这是一个统计框架,通过将细胞内空间调控因果关系与细胞外信号通路信息相结合,重建细胞类型或功能域特异性、动态和空间调控子。在合成数据集和真实数据集上的基准测试表明,SpaGRN在识别上下文相关调控子方面比现有工具具有更高的精度。应用于各种空间分辨转录组学平台(Stereo-seq、STARmap、MERFISH、CosMx、Slide-seq和10x Visium)、复杂癌组织样本以及发育中的果蝇胚胎和幼虫的3D数据集,SpaGRN不仅为解码受体介导的空间调控子提供了一个通用工具包,还揭示了器官发生和炎症背后的时空调控机制。