Suppr超能文献

通过顺电-准顺电相变实现的高能量密度氮化物电介质。

Giant energy density nitride dielectrics enabled by a paraelectric-metaparaelectric phase transition.

作者信息

Liu Zhijie, Ma Xingyue, Chen Lan, Yan Xiaohong, Liu Jun-Ming, Duan Chun-Gang, Íñiguez-González Jorge, Wu Di, Yang Yurong

机构信息

National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.

School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

出版信息

Nat Commun. 2025 Apr 3;16(1):3191. doi: 10.1038/s41467-025-58267-7.

Abstract

Electrostatic dielectric capacitors are foundational to advance the electronics and electric power devices due to their ultrafast charging/discharging capability and high-power density. However, the low energy density limits the potential for next generation devices in terms of miniaturization and integration. We propose a strategy that relies on inducing a field-driven phase transition that we denote paraelectric-metaparaelectric, which yields an ultrahigh energy density in III-nitrides. III-nitride compounds (Al, Sc, B)N with certain cation concentrations possess a nonpolar hexagonal ground phase which could transform into a polar wurtzite phase under a very large electric field, which is denoted as metaparaelectric with nearly null hysteresis P-E loop. This paraelectric-metaparaelectric transition leads to a polarization saturation at large electric field. The corresponding P-E loop displays a giant energy density of 308 J/cm with high efficiency nearly 100%. The proposed paraelectric-metaparaelectric phase transition strategy in nitrides opens an avenue to design of next generation high performance dielectrics.

摘要

静电介质电容器因其超快的充电/放电能力和高功率密度,对于推进电子和电力设备至关重要。然而,低能量密度限制了下一代设备在小型化和集成方面的潜力。我们提出了一种策略,该策略依赖于诱导一种场驱动的相变,我们将其称为顺电-准顺电相变,这种相变在III族氮化物中产生超高能量密度。具有特定阳离子浓度的III族氮化物化合物(Al、Sc、B)N具有非极性六方基相,在非常大的电场下可转变为极性纤锌矿相,这被称为具有几乎零滞后P-E回线的准顺电相。这种顺电-准顺电相变在大电场下导致极化饱和。相应的P-E回线显示出308 J/cm的巨大能量密度,效率接近100%。所提出的氮化物中顺电-准顺电相变策略为设计下一代高性能电介质开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84f7/11968989/7cc5b92ccb5e/41467_2025_58267_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验