Doroudkhani Zahra Shoghi, Mazloom Jamal, Ghaziani Majedeh Mahinzad
Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 4193833697, Rasht, Iran.
Sci Rep. 2025 Apr 3;15(1):11436. doi: 10.1038/s41598-025-96008-4.
NiO-MnO ribbons were synthesized through electrospinning and subsequently compared with NiO nanoparticles and MnO octahedral particles to evaluate their optical and electrochemical properties. XRD analysis confirmed the presence of cubic and tetragonal phases of NiO and MnO, respectively, within the nanocomposite. UV-Vis diffuse reflectance spectroscopy (DRS) revealed a bandgap of 3.53 eV for the nanocomposite, while photoluminescence emission quenching indicated an enhancement in surface defects. The ribbons exhibited superior electrochemical performance, achieving a specific capacitance of 372 F g at a current density of 1 A g, along with 94% capacitance retention after 3000 cycles at 7 A g. Furthermore, the assembled NiO-MnO//AC asymmetric supercapacitor device exhibited a maximum energy density of 40 Wh kg at a power density of 2400 W kg. These findings suggest that NiO-MnO ribbons hold significant promise for high-performance energy storage devices.
通过静电纺丝合成了NiO-MnO带材,随后将其与NiO纳米颗粒和MnO八面体颗粒进行比较,以评估它们的光学和电化学性能。XRD分析证实,在纳米复合材料中分别存在NiO的立方相和MnO的四方相。紫外-可见漫反射光谱(DRS)显示该纳米复合材料的带隙为3.53 eV,而光致发光发射猝灭表明表面缺陷增加。这些带材表现出优异的电化学性能,在电流密度为1 A g时比电容达到372 F g,在7 A g下循环3000次后电容保持率为94%。此外,组装的NiO-MnO//AC不对称超级电容器装置在功率密度为2400 W kg时的最大能量密度为40 Wh kg。这些发现表明,NiO-MnO带材在高性能储能装置方面具有巨大潜力。