Suppr超能文献

用于肺癌容积调强弧形治疗中基于知识的剂量体积直方图预测的OVH概念扩展。

An extension to the OVH concept for knowledge-based dose volume histogram prediction in lung tumor volumetric-modulated arc therapy.

作者信息

Brand Johann, Szkitsak Juliane, Ott Oliver J, Bert Christoph, Speer Stefan

机构信息

Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.

出版信息

J Appl Clin Med Phys. 2025 Jun;26(6):e70090. doi: 10.1002/acm2.70090. Epub 2025 Apr 3.

Abstract

PURPOSE

Volumetric-modulated arc therapy (VMAT) treatment planning allows a compromise between a sufficient coverage of the planning target volume (PTV) and a simultaneous sparing of organs-at-risk (OARs). Particularly in the case of lung tumors, deciding whether it is possible or worth spending more time on further improvements of a treatment plan is difficult. Therefore, this work aims to develop a knowledge-based, structure-dependent, automated dose volume histogram (DVH) prediction module for lung tumors.

METHODS

The module is based on comparing geometric relationships between the PTV and the surrounding OARs. Therefore, treatment plan and structure data of 106 lung cancer cases, each treated in 28 fractions and 180 cGy/fx, were collected. To access the spatial information, a two-dimensional metric named overlap volume histogram (OVH) was used. Due to the rotational symmetry of the OVH and the typically coplanar setup of the VMAT technique, OVH is complemented by the so-called overlap-z-histogram (OZH). A set of achievable DVHs is predicted by identifying plans in the database with similar OVH and OZH. By splitting the dataset into a test set of 22 patients and a training set of 84 patients, the prediction capability of the OVH-OZH combination was evaluated. For comparison between the predicted and achieved DVH curves the coefficient of determination R was calculated.

RESULTS

The total lung showed strong linearity between predicted and achieved DVH curves for the OVH-OZH combination, resulting in a value close to 1 (0.975 ± 0.022). The heart benefits the most of the OZH resulting in a high prediction capability, with a higher of 0.962 ± 0.036 compared to the prediction with OVH only (0.897 ± 0.087).

CONCLUSION

The combination of OZH and OVH was suitable for building a knowledge-based automated DVH prediction module. Implementing this method into the clinical workflow of treatment planning will contribute to advancing the quality of VMAT plans.

摘要

目的

容积调强弧形治疗(VMAT)治疗计划能够在充分覆盖计划靶区(PTV)和同时保护危及器官(OARs)之间达成妥协。尤其是对于肺部肿瘤,很难决定是否有可能或值得花费更多时间来进一步改进治疗计划。因此,本研究旨在为肺部肿瘤开发一种基于知识、依赖结构的自动剂量体积直方图(DVH)预测模块。

方法

该模块基于比较PTV与周围OARs之间的几何关系。因此,收集了106例肺癌病例的治疗计划和结构数据,每例均接受28次分割照射,每次分割剂量为180 cGy。为了获取空间信息,使用了一种名为重叠体积直方图(OVH)的二维度量。由于OVH的旋转对称性以及VMAT技术通常的共面设置,OVH由所谓的重叠z直方图(OZH)进行补充。通过在数据库中识别具有相似OVH和OZH的计划来预测一组可实现的DVH。将数据集分为22例患者的测试集和84例患者的训练集,评估OVH - OZH组合的预测能力。为了比较预测的和实际获得的DVH曲线,计算了决定系数R。

结果

对于OVH - OZH组合,全肺在预测的和实际获得的DVH曲线之间呈现出很强的线性关系,决定系数R值接近1(0.975±0.022)。心脏从OZH中获益最大,预测能力较高,与仅使用OVH进行预测(0.897±0.087)相比,其决定系数R更高,为0.962±0.036。

结论

OZH和OVH的组合适用于构建基于知识的自动DVH预测模块。将该方法应用于治疗计划的临床工作流程将有助于提高VMAT计划的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验