Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.
Institute of Physics and Technology, University of Bergen, Bergen, Norway.
Acta Oncol. 2023 Oct;62(10):1194-1200. doi: 10.1080/0284186X.2023.2238882. Epub 2023 Aug 17.
Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine. Model performance was compared for KBP models trained with manually created and automatic MCO treatment plans.
Two RapidPlan models with the same 30 locally advanced non-small cell lung cancer patients included were created, one containing manually created clinical plans (RP_CLIN) and one containing fully automatic multi-criteria optimized plans (RP_MCO). For 15 validation patients, model performance was compared in terms of dose-volume parameters and normal tissue complication probabilities, and an oncologist performed a blind comparison of the clinical (CLIN), RP_CLIN, and RP_MCO plans.
The heart and esophagus doses were lower for RP_MCO compared to RP_CLIN, resulting in an average reduction in the risk of 2-year mortality by 0.9 percentage points and the risk of acute esophageal toxicity by 1.6 percentage points with RP_MCO. The oncologist preferred the RP_MCO plan for 8 patients and the CLIN plan for 7 patients, while the RP_CLIN plan was not preferred for any patients.
RP_MCO improved OAR sparing compared to RP_CLIN and was selected for implementation in the clinic. Training a KBP model with clinical plans may lead to suboptimal output plans, and making an extra effort to optimize the library plans in the KBP model creation phase can improve the plan quality for many future patients.
基于知识的计划(KBP)是一种自动化放射治疗计划方法,它根据培训计划库来预测新患者的适当优化目标。与手动规划相比,KBP 可以节省时间,提高危及器官的保护和患者间的一致性,但它的性能取决于培训计划的质量。我们使用另一种自动化规划系统,该系统根据愿望清单生成多标准优化(MCO)计划,为 KBP 模型创建培训计划,以便将新系统的知识无缝集成到临床常规中。我们比较了基于手动创建的治疗计划和自动 MCO 治疗计划训练的 KBP 模型的性能。
创建了两个具有相同的 30 个局部晚期非小细胞肺癌患者的 RapidPlan 模型,一个包含手动创建的临床计划(RP_CLIN),一个包含完全自动的多标准优化计划(RP_MCO)。对于 15 个验证患者,我们比较了模型在剂量-体积参数和正常组织并发症概率方面的性能,并且一位肿瘤学家对临床(CLIN)、RP_CLIN 和 RP_MCO 计划进行了盲法比较。
与 RP_CLIN 相比,RP_MCO 的心脏和食管剂量较低,导致 RP_MCO 的 2 年死亡率风险平均降低 0.9 个百分点,急性食管毒性风险降低 1.6 个百分点。肿瘤学家更喜欢 8 名患者的 RP_MCO 计划,7 名患者的 CLIN 计划,而 RP_CLIN 计划不适合任何患者。
与 RP_CLIN 相比,RP_MCO 改善了 OAR 保护,并且被选择在临床实践中实施。用临床计划训练 KBP 模型可能会导致输出计划不理想,并且在 KBP 模型创建阶段额外努力优化库计划可以提高许多未来患者的计划质量。