Li Lingyun, Wu Jun, Wu Xue, Li Zhenjian, Zhang Xianming, Yan Zekun, Liang Yingqi, Huang Caishi, Qu Songnan
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China.
Faculty of Health Science, University of Macau, Taipa, Macau SAR, 999078, P. R. China.
Adv Mater. 2025 May;37(20):e2420068. doi: 10.1002/adma.202420068. Epub 2025 Apr 3.
As one of the most crucial immune cells in the tumor microenvironment (TME), regulating tumor-associated macrophages (TAMs) is vital for enhancing antitumor immunity. Here, an injectable carbon dots (CDs)-linked egg white hydrogel was developed, termed TAMs Transform Factory (TTF-L-C), to spatiotemporally manipulate TAMs. The fabricated CDs significantly promoted macrophage migration. Notably, TTF-L-C achieved macrophage spatial enrichment through CDs-induced directional recruitment with molecular Ctnnd1 upregulation. Subsequently, the recruited macrophages were locoregionally reprogrammed within TTF-L-C, as well as blocking the upregulated PD-L1. Finally, through multi-stage regulation at spatial, cellular, and molecular levels, TTF-L-C released immune-activated M1 macrophages to the tumor site as it degraded. Moreover, TTF-L-C promoted dendritic cell (DCs) maturation and further boosted T cell activation, thereby reshaping the tumor-suppressive TME. Through peritumoral injection, TTF-L-C enhanced tumor immunotherapy in both subcutaneous and recurrent 4T1 tumor models with satisfactory biosafety. Therefore, TTF-L-C is proposed to become a safe and powerful platform for various biomedical applications.
作为肿瘤微环境(TME)中最关键的免疫细胞之一,调节肿瘤相关巨噬细胞(TAM)对于增强抗肿瘤免疫力至关重要。在此,开发了一种可注射的碳点(CDs)连接的蛋清水凝胶,称为TAMs转化工厂(TTF-L-C),用于时空操纵TAM。制备的CDs显著促进巨噬细胞迁移。值得注意的是,TTF-L-C通过CDs诱导的定向募集和分子Ctnnd1上调实现巨噬细胞空间富集。随后,募集的巨噬细胞在TTF-L-C内进行局部重编程,并阻断上调的PD-L1。最后,通过在空间、细胞和分子水平的多阶段调节,TTF-L-C在降解时将免疫激活的M1巨噬细胞释放到肿瘤部位。此外,TTF-L-C促进树突状细胞(DC)成熟并进一步增强T细胞活化,从而重塑肿瘤抑制性TME。通过瘤周注射,TTF-L-C在皮下和复发性4T1肿瘤模型中均增强了肿瘤免疫治疗,且具有令人满意的生物安全性。因此,TTF-L-C有望成为各种生物医学应用的安全且强大的平台。