Kang Yaqing, Yan Jiao, Han Xiaoqing, Wang Xingbo, Wang Yanjing, Song Panpan, Su Xiaochen, Rauf Abdur, Jin Xuefei, Pu Fang, Zhang Haiyuan
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):36131-36141. doi: 10.1021/acsami.4c06415. Epub 2024 Jul 9.
Cancer immunotherapy is developing as the mainstream strategy for treatment of cancer. However, the interaction between the programmed cell death protein-1 (PD-1) and the programmed death ligand 1 (PD-L1) restricts T cell proliferation, resulting in the immune escape of tumor cells. Recently, immune checkpoint inhibitor therapy has achieved clinical success in tumor treatment through blocking the PD-1/PD-L1 checkpoint pathway. However, the presence of M2 tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) will inhibit antitumor immune responses and facilitate tumor growth, which can weaken the effectiveness of immune checkpoint inhibitor therapy. The repolarization of M2 TAMs into M1 TAMs can induce the immune response to secrete proinflammatory factors and active T cells to attack tumor cells. Herein, hollow iron oxide (FeO) nanoparticles (NPs) were prepared for reprogramming M2 TAMs into M1 TAMs. BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO inside hollow FeO NPs, followed by wrapping with macrophage membranes. The formed biomimetic FBN@M could produce gaseous carbon dioxide (CO) from NaHCO in response to the acidic TME, breaking up the macrophage membranes to release BMS-202. A series of assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.
J Immunother Cancer. 2022-6
Acta Biomater. 2024-9-15
Theranostics. 2025-3-31
Biomater Res. 2024-9-25