Suppr超能文献

人工智能在视网膜前膜护理中的作用:一项范围综述

The Role of Artificial Intelligence in Epiretinal Membrane Care: A Scoping Review.

作者信息

Mikhail David, Milad Daniel, Antaki Fares, Hammamji Karim, Qian Cynthia X, Rezende Flavio A, Duval Renaud

机构信息

Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.

Department of Ophthalmology, University of Montreal, Montreal, Canada.

出版信息

Ophthalmol Sci. 2024 Dec 20;5(4):100689. doi: 10.1016/j.xops.2024.100689. eCollection 2025 Jul-Aug.

Abstract

TOPIC

In ophthalmology, artificial intelligence (AI) demonstrates potential in using ophthalmic imaging across diverse diseases, often matching ophthalmologists' performance. However, the range of machine learning models for epiretinal membrane (ERM) management, which differ in methodology, application, and performance, remains largely unsynthesized.

CLINICAL RELEVANCE

Epiretinal membrane management relies on clinical evaluation and imaging, with surgical intervention considered in cases of significant impairment. AI analysis of ophthalmic images and clinical features could enhance ERM detection, characterization, and prognostication, potentially improving clinical decision-making. This scoping review aims to evaluate the methodologies, applications, and reported performance of AI models in ERM diagnosis, characterization, and prognostication.

METHODS

A comprehensive literature search was conducted across 5 electronic databases including Ovid MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science Core Collection from inception to November 14, 2024. Studies pertaining to AI algorithms in the context of ERM were included. The primary outcomes measured will be the reported design, application in ERM management, and performance of each AI model.

RESULTS

Three hundred ninety articles were retrieved, with 33 studies meeting inclusion criteria. There were 30 studies (91%) reporting their training and validation methods. Altogether, 61 distinct AI models were included. OCT scans and fundus photographs were used in 26 (79%) and 7 (21%) papers, respectively. Supervised learning and both supervised and unsupervised learning were used in 32 (97%) and 1 (3%) studies, respectively. Twenty-seven studies (82%) developed or adapted AI models using images, whereas 5 (15%) had models using both images and clinical features, and 1 (3%) used preoperative and postoperative clinical features without ophthalmic images. Study objectives were categorized into 3 stages of ERM care. Twenty-three studies (70%) implemented AI for diagnosis (stage 1), 1 (3%) identified ERM characteristics (stage 2), and 6 (18%) predicted vision impairment after diagnosis or postoperative vision outcomes (stage 3). No articles studied treatment planning. Three studies (9%) used AI in stages 1 and 2. Of the 16 studies comparing AI performance to human graders (i.e., retinal specialists, general ophthalmologists, and trainees), 10 (63%) reported equivalent or higher performance.

CONCLUSION

Artificial intelligence-driven assessments of ophthalmic images and clinical features demonstrated high performance in detecting ERM, identifying its morphological properties, and predicting visual outcomes following ERM surgery. Future research might consider the validation of algorithms for clinical applications in personal treatment plan development, ideally to identify patients who might benefit most from surgery.

FINANCIAL DISCLOSURES

The author(s) have no proprietary or commercial interest in any materials discussed in this article.

摘要

主题

在眼科领域,人工智能(AI)在利用眼科成像诊断各种疾病方面展现出潜力,其表现常常可与眼科医生相媲美。然而,用于视网膜前膜(ERM)管理的机器学习模型种类繁多,在方法、应用和性能方面存在差异,目前很大程度上仍未得到综合分析。

临床意义

ERM的管理依赖于临床评估和成像,在严重损害的情况下会考虑手术干预。对眼科图像和临床特征进行AI分析可以增强ERM的检测、特征描述和预后判断,有可能改善临床决策。本综述旨在评估AI模型在ERM诊断、特征描述和预后判断方面的方法、应用及报告的性能。

方法

对包括Ovid MEDLINE、EMBASE、Cochrane对照试验中央登记册、Cochrane系统评价数据库和Web of Science核心合集在内的5个电子数据库进行全面文献检索,检索时间从建库至2024年11月14日。纳入与ERM背景下的AI算法相关的研究。测量的主要结果将是每个AI模型报告的设计、在ERM管理中的应用及性能。

结果

共检索到390篇文章,33项研究符合纳入标准。有30项研究(91%)报告了其训练和验证方法。总共纳入了61个不同的AI模型。分别有26篇(79%)和7篇(21%)论文使用了光学相干断层扫描(OCT)扫描和眼底照片。分别有32项(97%)和1项(3%)研究使用了监督学习以及监督和无监督学习。27项研究(82%)使用图像开发或改编AI模型,而5项(15%)使用了图像和临床特征两者,1项(3%)使用术前和术后临床特征但未使用眼科图像。研究目标分为ERM治疗的3个阶段。23项研究(70%)将AI用于诊断(第1阶段),1项(3%)识别ERM特征(第2阶段),6项(18%)预测诊断后视力损害或术后视力结果(第3阶段)。没有文章研究治疗计划。3项研究(9%)在第1和第2阶段使用了AI。在将AI性能与人类分级者(即视网膜专科医生、普通眼科医生和实习生)进行比较的16项研究中,10项(63%)报告了同等或更高的性能。

结论

人工智能驱动的眼科图像和临床特征评估在检测ERM、识别其形态学特性以及预测ERM手术后的视觉结果方面表现出高性能。未来的研究可能会考虑验证算法在个人治疗计划制定中的临床应用,理想情况下是识别出可能从手术中获益最大的患者。

财务披露

作者对本文讨论的任何材料均无专利或商业利益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dabb/11964620/564edd8ec6e3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验