Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Ophthalmology, University of Montreal, Montreal, Canada.
Department of Ophthalmology, University of Montreal, Montreal, Canada; Department of Ophthalmology, Hôpital Maisonneuve-Rosemont, Montreal, Canada; Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada.
Surv Ophthalmol. 2025 Jan-Feb;70(1):12-27. doi: 10.1016/j.survophthal.2024.09.003. Epub 2024 Sep 30.
We focus on the utility of artificial intelligence (AI) in the management of macular hole (MH). We synthesize 25 studies, comprehensively reporting on each AI model's development strategy, validation, tasks, performance, strengths, and limitations. All models analyzed ophthalmic images, and 5 (20 %) also analyzed clinical features. Study objectives were categorized based on 3 stages of MH care: diagnosis, identification of MH characteristics, and postoperative predictions of hole closure and vision recovery. Twenty-two (88 %) AI models underwent supervised learning, and the models were most often deployed to determine a MH diagnosis. None of the articles applied AI to guiding treatment plans. AI model performance was compared to other algorithms and to human graders. Of the 10 studies comparing AI to human graders (i.e., retinal specialists, general ophthalmologists, and ophthalmology trainees), 5 (50 %) reported equivalent or higher performance. Overall, AI analysis of images and clinical characteristics in MH demonstrated high diagnostic and predictive accuracy. Convolutional neural networks comprised the majority of included AI models, including those which were high performing. Future research may consider validating algorithms to propose personalized treatment plans and explore clinical use of the aforementioned algorithms.
我们专注于人工智能(AI)在黄斑裂孔(MH)管理中的应用。我们综合了 25 项研究,全面报告了每个 AI 模型的开发策略、验证、任务、性能、优势和局限性。所有分析的模型均分析了眼科图像,其中 5 项(20%)还分析了临床特征。研究目标基于 MH 护理的三个阶段进行分类:诊断、MH 特征识别以及术后孔闭合和视力恢复的预测。22 项(88%)AI 模型采用了监督学习,这些模型主要用于确定 MH 诊断。没有任何文章将 AI 应用于指导治疗计划。AI 模型的性能与其他算法和人类分级员进行了比较。在 10 项将 AI 与人类分级员(即视网膜专家、普通眼科医生和眼科培训生)进行比较的研究中,有 5 项(50%)报告了等效或更高的性能。总的来说,AI 对 MH 图像和临床特征的分析显示出了较高的诊断和预测准确性。卷积神经网络构成了大多数包含的 AI 模型,其中包括表现出色的模型。未来的研究可能会考虑验证算法,以提出个性化的治疗计划,并探索上述算法的临床应用。