Suppr超能文献

使用机器学习策略和大量血浆炎症蛋白预测2019冠状病毒病死亡率:一项队列研究

Prediction of COVID-19 mortality using machine learning strategies and a large-scale panel of plasma inflammatory proteins: A cohort study.

作者信息

Bastos Mendes Luiz Filipe, Dal-Pizzol Henrique Ritter, Prestes Gabriele, Saibro Girardi Carolina, Santos Lucas, Gelain Daniel Pens, Westphal Glauco A, Walz Roger, Ritter Cristiane, Dal-Pizzol Felipe, Fonseca Moreira Jose Claudio

机构信息

Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.

出版信息

Med Intensiva (Engl Ed). 2025 Apr 3:502200. doi: 10.1016/j.medine.2025.502200.

Abstract

OBJECTIVE

To apply machine learning algorithms to generate models capable of predicting mortality in COVID-19 patients, using a large platform of plasma inflammatory mediators.

DESING

Prospective, descriptive, cohort study.

SETTING

6 intensive care units in 2 hospitals in Southern Brazil.

PATIENTS

Patients aged > 18 years who were diagnosed with COVID-19 through reverse transcriptase reaction or rapid antigen test.

INTERVENTIONS

None.

MAIN VARIABLES OF INTEREST

Demographic and clinical variables, 65 inflammatory biomarkers, mortality.

RESULTS

Combinations of two or three proteins yield higher predictive value when compared to individual proteins or the full set of the 65 proteins. A proliferation-inducing ligand (APRIL) and cluster of differentiation 40 ligand (CD40L) consistently emerge among the highest-ranking combinations, suggesting a potential synergistic effect in predicting clinical outcomes. The network structure suggested a dysregulated immune response in non-survivors characterized by the failure of regulatory cytokines to temper an overwhelming inflammatory reaction.

CONCLUSION

Our results highlight the value of feature selection and careful consideration of biomarker combinations to improve prediction accuracy in COVID-19 patients.

摘要

目的

应用机器学习算法,利用一个大型血浆炎症介质平台生成能够预测新冠病毒病(COVID-19)患者死亡率的模型。

设计

前瞻性、描述性队列研究。

地点

巴西南部2家医院的6个重症监护病房。

患者

年龄大于18岁、通过逆转录酶反应或快速抗原检测确诊为COVID-19的患者。

干预措施

无。

主要研究变量

人口统计学和临床变量、65种炎症生物标志物、死亡率。

结果

与单个蛋白质或65种蛋白质的全集相比,两种或三种蛋白质的组合具有更高的预测价值。增殖诱导配体(APRIL)和分化簇40配体(CD40L)始终出现在排名最高的组合中,表明在预测临床结果方面可能存在协同效应。网络结构表明,非幸存者的免疫反应失调,其特征是调节性细胞因子未能抑制压倒性的炎症反应。

结论

我们的结果强调了特征选择以及仔细考虑生物标志物组合对于提高COVID-19患者预测准确性的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验