Division of Gastrointestinal Surgery, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Division of Colorectal Surgery, Department of Surgery, University of Minnesota, Minneapolis, Minnesota.
Dis Colon Rectum. 2024 Mar 1;67(3):387-397. doi: 10.1097/DCR.0000000000003038. Epub 2023 Nov 16.
BACKGROUND: Pathologic complete response after neoadjuvant therapy is an important prognostic indicator for locally advanced rectal cancer and may give insights into which patients might be treated nonoperatively in the future. Existing models for predicting pathologic complete response in the pretreatment setting are limited by small data sets and low accuracy. OBJECTIVE: We sought to use machine learning to develop a more generalizable predictive model for pathologic complete response for locally advanced rectal cancer. DESIGN: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy followed by surgical resection were identified in the National Cancer Database from years 2010 to 2019 and were split into training, validation, and test sets. Machine learning techniques included random forest, gradient boosting, and artificial neural network. A logistic regression model was also created. Model performance was assessed using an area under the receiver operating characteristic curve. SETTINGS: This study used a national, multicenter data set. PATIENTS: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy and proctectomy. MAIN OUTCOME MEASURES: Pathologic complete response defined as T0/xN0/x. RESULTS: The data set included 53,684 patients. Pathologic complete response was experienced by 22.9% of patients. Gradient boosting showed the best performance with an area under the receiver operating characteristic curve of 0.777 (95% CI, 0.773-0.781), compared with 0.684 (95% CI, 0.68-0.688) for logistic regression. The strongest predictors of pathologic complete response were no lymphovascular invasion, no perineural invasion, lower CEA, smaller size of tumor, and microsatellite stability. A concise model including the top 5 variables showed preserved performance. LIMITATIONS: The models were not externally validated. CONCLUSIONS: Machine learning techniques can be used to accurately predict pathologic complete response for locally advanced rectal cancer in the pretreatment setting. After fine-tuning a data set including patients treated nonoperatively, these models could help clinicians identify the appropriate candidates for a watch-and-wait strategy. See Video Abstract . EL CNCER DE RECTO BASADA EN FACTORES PREVIOS AL TRATAMIENTO MEDIANTE EL APRENDIZAJE AUTOMTICO: ANTECEDENTES:La respuesta patológica completa después de la terapia neoadyuvante es un indicador pronóstico importante para el cáncer de recto localmente avanzado y puede dar información sobre qué pacientes podrían ser tratados de forma no quirúrgica en el futuro. Los modelos existentes para predecir la respuesta patológica completa en el entorno previo al tratamiento están limitados por conjuntos de datos pequeños y baja precisión.OBJETIVO:Intentamos utilizar el aprendizaje automático para desarrollar un modelo predictivo más generalizable para la respuesta patológica completa para el cáncer de recto localmente avanzado.DISEÑO:Los pacientes con cáncer de recto localmente avanzado que se sometieron a terapia neoadyuvante seguida de resección quirúrgica se identificaron en la Base de Datos Nacional del Cáncer de los años 2010 a 2019 y se dividieron en conjuntos de capacitación, validación y prueba. Las técnicas de aprendizaje automático incluyeron bosque aleatorio, aumento de gradiente y red neuronal artificial. También se creó un modelo de regresión logística. El rendimiento del modelo se evaluó utilizando el área bajo la curva característica operativa del receptor.ÁMBITO:Este estudio utilizó un conjunto de datos nacional multicéntrico.PACIENTES:Pacientes con cáncer de recto localmente avanzado sometidos a terapia neoadyuvante y proctectomía.PRINCIPALES MEDIDAS DE VALORACIÓN:Respuesta patológica completa definida como T0/xN0/x.RESULTADOS:El conjunto de datos incluyó 53.684 pacientes. El 22,9% de los pacientes experimentaron una respuesta patológica completa. El refuerzo de gradiente mostró el mejor rendimiento con un área bajo la curva característica operativa del receptor de 0,777 (IC del 95%: 0,773 - 0,781), en comparación con 0,684 (IC del 95%: 0,68 - 0,688) para la regresión logística. Los predictores más fuertes de respuesta patológica completa fueron la ausencia de invasión linfovascular, la ausencia de invasión perineural, un CEA más bajo, un tamaño más pequeño del tumor y la estabilidad de los microsatélites. Un modelo conciso que incluye las cinco variables principales mostró un rendimiento preservado.LIMITACIONES:Los modelos no fueron validados externamente.CONCLUSIONES:Las técnicas de aprendizaje automático se pueden utilizar para predecir con precisión la respuesta patológica completa para el cáncer de recto localmente avanzado en el entorno previo al tratamiento. Después de realizar ajustes en un conjunto de datos que incluye pacientes tratados de forma no quirúrgica, estos modelos podrían ayudar a los médicos a identificar a los candidatos adecuados para una estrategia de observar y esperar. (Traducción-Dr. Ingrid Melo ).
背景:新辅助治疗后的病理完全缓解是局部晚期直肠癌的一个重要预后指标,并且可能为未来哪些患者可以非手术治疗提供见解。现有的用于预测新辅助治疗前病理完全缓解的模型受到数据集小和准确性低的限制。
目的:我们试图使用机器学习来开发一种更具普遍性的局部晚期直肠癌病理完全缓解预测模型。
设计:从 2010 年至 2019 年,国家癌症数据库中确定了接受新辅助治疗后接受手术切除的局部晚期直肠癌患者,并将其分为训练集、验证集和测试集。机器学习技术包括随机森林、梯度提升和人工神经网络。还创建了一个逻辑回归模型。使用接收者操作特征曲线下的面积来评估模型性能。
设置:本研究使用了一个全国性、多中心数据集。
患者:接受新辅助治疗和直肠切除术的局部晚期直肠癌患者。
主要观察指标:定义为 T0/xN0/x 的病理完全缓解。
结果:数据集包括 53684 名患者。22.9%的患者经历了病理完全缓解。梯度提升的表现最佳,其接受者操作特征曲线下的面积为 0.777(95%置信区间:0.773-0.781),而逻辑回归的面积为 0.684(95%置信区间:0.68-0.688)。病理完全缓解的最强预测因素包括无淋巴血管侵犯、无神经周围侵犯、较低的 CEA、肿瘤较小和微卫星稳定。包括前 5 个变量的简明模型显示出保留性能。
局限性:这些模型没有进行外部验证。
结论:机器学习技术可用于准确预测局部晚期直肠癌新辅助治疗前的病理完全缓解。在对包括非手术治疗患者在内的数据进行微调后,这些模型可以帮助临床医生识别适合观望等待策略的合适患者。(翻译:Ingrid Melo)
Dis Colon Rectum. 2023-3-1
Dis Colon Rectum. 2025-1-1
Dis Colon Rectum. 2023-7-1
Dis Colon Rectum. 2023-4-1
Dis Colon Rectum. 2024-5-1
J Natl Compr Canc Netw. 2022-10
N Engl J Med. 2022-6-23