Jia Jinhao, Huang Juan, Zhang Fengxuan, Zhang Mei
School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, China.
Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China.
Sci Rep. 2025 Apr 4;15(1):11606. doi: 10.1038/s41598-025-94745-0.
We propose a scheme to generate entanglement between microwave fields and achieve strong squeezing of the optical output field in an opto-magnomechanical ring cavity. The system consists of two elastic yttrium iron garnet crystals with attached mirror pads inside two separate microwave cavities, and an extra fixed mirror outside the microwave cavities is utilized to complete the optical ring cavity with the two mirror pads. A magnon mode supported by the yttrium iron garnet crystal couples directly to the microwave cavity mode via magnetic dipole interaction and couples indirectly to the optical cavity mode via magnomechanical displacement, which is caused by magnetostrictive interaction and also couples the magnon mode to a phonon mode. A squeezed light is fed into the ring cavity to entangle the two phonon modes. To activate the beam splitter interaction, each magnon mode and optical cavity mode is driven by a strong red-detuned driving field. Consequently, the stationary entanglement between the two microwave cavities is obtained. The transfer efficiency of the entanglement is [Formula: see text]. To ensure the squeezing of the magnon mode generated by magnetostrictive interaction transferred into the optical field, we remove two microwave cavities. The squeezing of the optical output field can reach up to [Formula: see text] dB at 10 mK and survives up to an environmental temperature about 500 mK. Our scheme may find various useful applications in quantum wireless fidelity network and the enhancement of sensitivity of measurements.
我们提出了一种方案,以在光磁机械环形腔中产生微波场之间的纠缠并实现光输出场的强压缩。该系统由两个弹性钇铁石榴石晶体组成,在两个独立的微波腔内附有镜垫,并且利用微波腔外的一个额外固定镜与两个镜垫一起构成光学环形腔。钇铁石榴石晶体所支持的一个磁振子模式通过磁偶极相互作用直接耦合到微波腔模式,并通过磁致伸缩相互作用引起的磁机械位移间接耦合到光学腔模式,磁致伸缩相互作用还将磁振子模式耦合到一个声子模式。一束压缩光被注入环形腔以纠缠两个声子模式。为了激活分束器相互作用,每个磁振子模式和光学腔模式都由一个强的红失谐驱动场驱动。因此,获得了两个微波腔之间的稳态纠缠。纠缠的转移效率为[公式:见原文]。为了确保由磁致伸缩相互作用产生的磁振子模式的压缩转移到光场中,我们移除了两个微波腔。在10 mK时,光输出场的压缩可达[公式:见原文]dB,并且在高达约500 mK的环境温度下仍能保持。我们的方案可能在量子无线保真网络以及提高测量灵敏度方面找到各种有用的应用。