Vaez Allaei S Mehdi, Amininasab Mehriar, Ishkhanyan Hrachya, Poghosyan Armen H
Department of Physics, University of Tehran, Tehran, 14395-547, Iran.
New Uzbekistan University, Movarounnahr Street 1, 100000, Tashkent, Uzbekistan.
Sci Rep. 2025 Apr 4;15(1):11593. doi: 10.1038/s41598-025-96435-3.
A carbon nanotube (CNT) can affect biological systems, ranging from toxicity to changes in functionality. Here, a series of long-scale (1-2 µs) molecular dynamics simulations were conducted to investigate the adsorption and interaction of lysozyme with the CNT, a possible mechanism for altering protein flexibility and function. Four systems were examined: native lysozyme/CNT, denatured lysozyme/CNT, and both systems post-docking. Our results indicate that native lysozyme does not undergo conformational changes when initially captured by a CNT. However, after docking, the native lysozyme/CNT complex exhibits conformational changes. In contrast, the denatured lysozyme binds more effectively to the CNT in both pre- and post-docking scenarios. Key amino acid residues, arginine and tryptophan, have been identified as crucial for lysozyme/CNT interactions. The surface of the CNT adsorbs lysozyme through π-π stacking and van der Waals interactions, with these multimodal interactions serving as the main driving force for protein anchoring to the nanotube. These results also underscore the significance of docking in the simulation of protein/nanoparticle interactions, which can lead to entirely different conclusions regarding, for example, the toxicity or functionality of a given nanoparticle life.
碳纳米管(CNT)会影响生物系统,范围从毒性到功能变化。在此,进行了一系列长时间尺度(1 - 2微秒)的分子动力学模拟,以研究溶菌酶与碳纳米管的吸附及相互作用,这是改变蛋白质柔韧性和功能的一种可能机制。研究了四个系统:天然溶菌酶/碳纳米管、变性溶菌酶/碳纳米管以及两个系统对接后。我们的结果表明,天然溶菌酶最初被碳纳米管捕获时不会发生构象变化。然而,对接后,天然溶菌酶/碳纳米管复合物会出现构象变化。相比之下,变性溶菌酶在对接前和对接后的情况下都能更有效地与碳纳米管结合。关键氨基酸残基精氨酸和色氨酸已被确定对溶菌酶/碳纳米管相互作用至关重要。碳纳米管表面通过π-π堆积和范德华相互作用吸附溶菌酶,这些多模式相互作用是蛋白质锚定到纳米管的主要驱动力。这些结果还强调了对接在蛋白质/纳米颗粒相互作用模拟中的重要性,这可能导致关于例如给定纳米颗粒寿命的毒性或功能得出完全不同的结论。