能够锚定在细胞膜上并作为先进诊疗的“细胞背包”的多功能Janus纳米颗粒。
Multifunctional Janus Nanoparticles Capable of Anchoring to the Cell Membrane and Serving as "Cellular Backpacks" for Advanced Theranostics.
作者信息
Hao Min, Chen Yidan, Leisen Johannes, Whitworth Ted J, Xia Younan
机构信息
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
出版信息
J Am Chem Soc. 2025 Apr 16;147(15):12973-12981. doi: 10.1021/jacs.5c02587. Epub 2025 Apr 5.
A cell-based theranostic system can be fabricated by attaching nanomedicines to the surface of carrier cells, but it remains a challenge to achieve the attachment without involving endocytosis. Herein, we address this challenge by developing multifunctional Janus nanoparticles with orthogonal surface properties for the two opposite halves. When incubated with carrier cells, the hydrophobic half made of polystyrene readily inserts into the plasma membrane, whereas the hydrophilic SiO half grafted with poly(ethylene glycol) protrudes away from the cell surface. Additionally, the SiO half can be made with a cavity to hold theranostic agents and thus serves as a "backpack" for the carrier cell. By confining the theranostic agents in the SiO compartment and outside the carrier cell during the delivery process, their adverse impact on the cell is minimized. Upon release in an in vitro spheroid model, the agents quickly eradicate cancer cells. Moreover, the polystyrene half can be loaded with superparamagnetic nanoparticles to enhance magnetic resonance imaging contrast and enable magnetic manipulation, facilitating image-guided and target-directed treatments. By further optimizing the interactions between the multifunctional Janus nanoparticles and carrier cells, this system can be developed into a robust platform for cell-based theranostics.
通过将纳米药物附着在载体细胞表面可以构建基于细胞的诊疗系统,但在不涉及内吞作用的情况下实现附着仍然是一个挑战。在此,我们通过开发具有正交表面性质的多功能Janus纳米粒子来应对这一挑战,该纳米粒子的两个相对半部分具有不同的表面性质。当与载体细胞一起孵育时,由聚苯乙烯制成的疏水半部分很容易插入质膜,而接枝有聚乙二醇的亲水SiO半部分则从细胞表面突出。此外,SiO半部分可以制成带有一个腔室来容纳诊疗试剂,因此可作为载体细胞的一个“背包”。在递送过程中,通过将诊疗试剂限制在SiO隔室以及载体细胞外部,可将它们对细胞的不利影响降至最低。在体外球体模型中释放后,这些试剂能迅速根除癌细胞。此外,聚苯乙烯半部分可以负载超顺磁性纳米粒子以增强磁共振成像对比度并实现磁性操控,从而便于进行图像引导和靶向治疗。通过进一步优化多功能Janus纳米粒子与载体细胞之间的相互作用,该系统可以发展成为一个强大的基于细胞的诊疗平台。
相似文献
Nanoscale. 2020-9-28
J Photochem Photobiol B. 2021-5
引用本文的文献
Nanomaterials (Basel). 2025-7-11
本文引用的文献
Adv Healthc Mater. 2025-1
Nat Rev Clin Oncol. 2024-6
Nat Biomed Eng. 2024-6
Nat Commun. 2023-7-17
Proc Natl Acad Sci U S A. 2023-4-25
Nat Rev Neurol. 2023-1
Signal Transduct Target Ther. 2022-8-6