Xu Yang, Fleming Stephen, Tegtmeyer Matthew, McCarroll Steven A, Babadi Mehrtash
Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Cell Syst. 2025 Apr 16;16(4):101245. doi: 10.1016/j.cels.2025.101245. Epub 2025 Apr 4.
Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations and unraveling the intricate molecular mechanisms governing cellular behavior. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding inherent response heterogeneity associated with cell state diversity and model explainability. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs and utilizes an attention mechanism to capture correspondence between cell state and perturbation response. We thoroughly evaluate CellCap's interpretability using multiple simulated scenarios as well as two real single-cell perturbation datasets. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling insights overlooked in previous analyses.
单细胞转录组学与基因和化合物扰动相结合,为探索不同背景下的细胞行为提供了一种强大的方法。此类实验能够揭示细胞状态特异性的扰动反应,并阐明控制细胞行为的复杂分子机制。然而,现有的计算方法主要侧重于预测平均细胞反应,而忽略了与细胞状态多样性和模型可解释性相关的固有反应异质性。在本研究中,我们提出了CellCap,这是一种用于单细胞扰动实验端到端分析的深度生成模型。CellCap在潜在空间中采用稀疏字典学习,将细胞状态特异性的扰动反应解构为一组转录反应程序,并利用注意力机制捕捉细胞状态与扰动反应之间的对应关系。我们使用多个模拟场景以及两个真实的单细胞扰动数据集全面评估了CellCap的可解释性。我们的结果表明,CellCap成功揭示了细胞状态与扰动反应之间的关系,揭示了先前分析中被忽视的见解。