Peters Jim, van Leeuwen Merle M, Moriakov Nikita, van Dijck Jos A A M, Mann Ritse M, Teuwen Jonas, Lips Esther H, van den Belt-Dusebout Alexandra W, Wesseling Jelle, Penning de Vries Bas B L, Verboom Sarah, Karssemeijer Nico, Elias Sjoerd G, Broeders Mireille J M
Department IQ Health, Radboud University Medical Center, Nijmegen, Netherlands.
Division of Molecular Pathology, Netherlands Cancer Institute (NKI), Amsterdam, Netherlands.
Br J Cancer. 2025 Apr 6. doi: 10.1038/s41416-025-02995-6.
Optimizing breast-screening performance involves minimizing overdiagnosis of prognostically favorable invasive breast cancer (IBC) that does not need immediate recall and underdiagnosis of prognostically unfavorable IBC that is not recalled timely. We investigated whether mammographic features of masses predict prognostically relevant IBC characteristics.
In a screening cohort, we obtained pathological information of 1587 IBCs presenting as a mass through the nationwide cancer registry and pathology databank. We developed models based on mammographic tumor appearance to predict whether IBC was prognostically favorable (T1N0M0 luminal A-like) or unfavorable. Models were based on 1095 positive screening mammograms (possible overdiagnosis), or on 603 last negative mammograms with in retrospect visible masses (possible underdiagnosis). We calculated performance metrics using cross-validation.
23.5% of masses were prognostically favorable IBC. Using 1095 positive mammograms, the model's predictions to have prognostically favorable IBC (10th-90th percentile range 8.7-47.0%) yielded AUC 0.75 (SD across repeats 0.01), slope 1.16 (SD 0.07). Performance in 603 last negative screening mammograms with masses was poor: AUC 0.60 (SD 0.02), slope 0.85 (SD 0.28).
Mammography-based models from masses representing IBC at time of recall (possible overdiagnosis) predict prognostically relevant characteristics of IBC. Models based on in retrospect visible masses (possible underdiagnosis) performed poorly.
优化乳腺筛查性能涉及尽量减少对预后良好、无需立即召回的浸润性乳腺癌(IBC)的过度诊断,以及对预后不良、未及时召回的IBC的漏诊。我们研究了肿块的乳腺钼靶特征是否能预测与预后相关的IBC特征。
在一个筛查队列中,我们通过全国癌症登记处和病理数据库获得了1587例表现为肿块的IBC的病理信息。我们基于乳腺钼靶肿瘤表现开发模型,以预测IBC的预后是良好(T1N0M0管腔A型)还是不良。模型基于1095份阳性筛查乳腺钼靶片(可能存在过度诊断),或基于603份最后一次阴性乳腺钼靶片且回顾时可见肿块(可能存在漏诊)。我们使用交叉验证计算性能指标。
23.5%的肿块为预后良好的IBC。使用1095份阳性乳腺钼靶片,该模型预测预后良好的IBC(第10百分位数至第90百分位数范围为8.7 - 47.0%)的曲线下面积(AUC)为0.75(重复测量的标准差为0.01),斜率为1.16(标准差为0.07)。在603份最后一次阴性且有肿块的筛查乳腺钼靶片中,模型性能较差:AUC为0.60(标准差为0.02),斜率为0.85(标准差为0.28)。
基于召回时表现为IBC的肿块的乳腺钼靶模型(可能存在过度诊断)可预测IBC与预后相关的特征。基于回顾时可见肿块的模型(可能存在漏诊)性能较差。