Suppr超能文献

提高数字乳腺 X 光片中的病变体积测量精度。

Improving lesion volume measurements on digital mammograms.

机构信息

Department of Radiation Oncology, Netherlands Cancer Institute, The Netherlands; Department of Medical Imaging, Radboud University Medical Center, The Netherlands; Institute for Informatics, University of Amsterdam, The Netherlands.

Department for Health Evidence, Radboud University Medical Center, The Netherlands.

出版信息

Med Image Anal. 2024 Oct;97:103269. doi: 10.1016/j.media.2024.103269. Epub 2024 Jul 11.

Abstract

Lesion volume is an important predictor for prognosis in breast cancer. However, it is currently impossible to compute lesion volumes accurately from digital mammography data, which is the most popular and readily available imaging modality for breast cancer. We make a step towards a more accurate lesion volume measurement on digital mammograms by developing a model that allows to estimate lesion volumes on processed mammogram. Processed mammograms are the images routinely used by radiologists in clinical practice as well as in breast cancer screening and are available in medical centers. Processed mammograms are obtained from raw mammograms, which are the X-ray data coming directly from the scanner, by applying certain vendor-specific non-linear transformations. At the core of our volume estimation method is a physics-based algorithm for measuring lesion volumes on raw mammograms. We subsequently extend this algorithm to processed mammograms via a deep learning image-to-image translation model that produces synthetic raw mammograms from processed mammograms in a multi-vendor setting. We assess the reliability and validity of our method using a dataset of 1778 mammograms with an annotated mass. Firstly, we investigate the correlations between lesion volumes computed from mediolateral oblique and craniocaudal views, with a resulting Pearson correlation of 0.93 [95% confidence interval (CI) 0.92 - 0.93]. Secondly, we compare the resulting lesion volumes from true and synthetic raw data, with a resulting Pearson correlation of 0.998 [95%CI 0.998 - 0.998] . Finally, for a subset of 100 mammograms with a malignant mass and concurrent MRI examination available, we analyze the agreement between lesion volume on mammography and MRI, resulting in an intraclass correlation coefficient of 0.81 [95%CI 0.73 - 0.87] for consistency and 0.78 [95%CI 0.66 - 0.86] for absolute agreement. In conclusion, we developed an algorithm to measure mammographic lesion volume that reached excellent reliability and good validity, when using MRI as ground truth. The algorithm may play a role in lesion characterization and breast cancer prognostication on mammograms.

摘要

病灶体积是乳腺癌预后的一个重要预测指标。然而,目前从数字乳腺 X 线摄影数据中准确计算病灶体积是不可能的,因为数字乳腺 X 线摄影是乳腺癌最常用和最容易获得的成像方式。我们通过开发一种模型,朝着更准确地测量数字乳腺 X 线摄影中的病灶体积迈出了一步,该模型允许从处理后的乳腺 X 线摄影中估计病灶体积。处理后的乳腺 X 线摄影是放射科医生在临床实践以及乳腺癌筛查中常规使用的图像,并且可在医疗中心获得。处理后的乳腺 X 线摄影是通过应用特定供应商特定的非线性变换从原始乳腺 X 线摄影中获得的。我们的体积估计方法的核心是一种基于物理的算法,用于测量原始乳腺 X 线摄影中的病灶体积。随后,我们通过深度学习图像到图像的翻译模型将该算法扩展到处理后的乳腺 X 线摄影中,该模型在多供应商环境中从处理后的乳腺 X 线摄影生成合成的原始乳腺 X 线摄影。我们使用具有注释肿块的 1778 张乳腺 X 线摄影数据集评估我们的方法的可靠性和有效性。首先,我们研究了从内外斜位和头尾位计算的病灶体积之间的相关性,得到 Pearson 相关系数为 0.93 [95%置信区间(CI)0.92 - 0.93]。其次,我们比较了真实和合成原始数据的结果病灶体积,得到 Pearson 相关系数为 0.998 [95%CI 0.998 - 0.998]。最后,对于具有恶性肿块和并发 MRI 检查的 100 张乳腺 X 线摄影子集,我们分析了乳腺 X 线摄影和 MRI 上的病灶体积之间的一致性,得到了一致性的组内相关系数为 0.81 [95%CI 0.73 - 0.87],绝对一致性为 0.78 [95%CI 0.66 - 0.86]。总之,我们开发了一种用于测量乳腺 X 线摄影中病灶体积的算法,当使用 MRI 作为金标准时,该算法达到了极好的可靠性和良好的有效性。该算法可能在乳腺 X 线摄影中的病灶特征描述和乳腺癌预后中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验