Ojha Anuj, Zhao Shu-Jun, Akpunonu Basil, Zhang Jian-Ting, Simo Kerri A, Liu Jing-Yuan
Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA.
Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
Cancer Lett. 2025 Jul 10;622:217689. doi: 10.1016/j.canlet.2025.217689. Epub 2025 Apr 4.
In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building on this insight, we developed sex-specific 3-year survival predictive models alongside a single comprehensive model. Despite smaller sample sizes, the sex-specific models outperformed the general model. We further refined our models by selecting the most important features from the initial models. The refined sex-specific predictive models achieved higher accuracy and consistently outperformed the refined comprehensive model, highlighting the value of sex-specific analysis. To ensure robustness, all refined sex-specific models were calibrated and then evaluated using an independent dataset. Random Forest models emerged as the most effective predictors, achieving accuracies of 90.33 % for males and 90.40 % for females on the training dataset, and 81.25 % for males and 89.47 % for females on the independent test dataset. These top-performing models were integrated into Gap-App, a web application that leverages individual gene expression profiles and sex information for personalized survival predictions. As the first online tool bridging complex genomic data with clinical application, Gap-App facilitates more precise, individualized cancer care, marking a significant step in personalized prognosis prediction. This study underscores the importance of incorporating sex differences in predictive modeling and sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The Gap-App service is freely available for patients and clinicians at www.gap-app.org.
在本研究中,我们利用RNA测序基因表达数据和先进的机器学习技术,确定了男性和女性胰腺导管腺癌(PDAC)患者之间不同的基因表达谱。基于这一见解,我们开发了性别特异性的3年生存预测模型以及一个综合模型。尽管样本量较小,但性别特异性模型的表现优于通用模型。我们通过从初始模型中选择最重要的特征进一步优化了模型。优化后的性别特异性预测模型实现了更高的准确率,并且始终优于优化后的综合模型,突出了性别特异性分析的价值。为确保稳健性,所有优化后的性别特异性模型都经过校准,然后使用独立数据集进行评估。随机森林模型成为最有效的预测器,在训练数据集上男性的准确率为90.33%,女性为90.40%,在独立测试数据集上男性为81.25%,女性为89.47%。这些表现最佳的模型被整合到Gap-App中,这是一个利用个体基因表达谱和性别信息进行个性化生存预测的网络应用程序。作为首个将复杂基因组数据与临床应用相连接的在线工具,Gap-App有助于提供更精确、个性化的癌症护理,标志着个性化预后预测迈出了重要一步。这项研究强调了在预测建模中纳入性别差异的重要性,并为从传统的一刀切模式向更个性化、靶向性更强的医学转变奠定了基础。Gap-App服务可在www.gap-app.org上免费提供给患者和临床医生。