Ojha Anuj, Zhao Shu-Jun, Akpunonu Basil, Zhang Jian-Ting, Simo Kerri A, Liu Jing-Yuan
Department of Medicine, College of Medicine, University of Toledo, Toledo, OH, USA.
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, USA.
bioRxiv. 2024 Oct 17:2024.06.04.597246. doi: 10.1101/2024.06.04.597246.
In this study, using RNA-Seq gene expression data and advanced machine learning techniques, we identified distinct gene expression profiles between male and female pancreatic ductal adenocarcinoma (PDAC) patients. Building upon this insight, we developed sex-specific 3-year survival predictive models along with a single comprehensive model. These sex-specific models outperformed the single general model despite the smaller sample sizes. We further refined our models by using the most important features extracted from these initial models. The refined sex-specific predictive models achieved improved accuracies of 92.62% for males and 91.96% for females, respectively, versus an accuracy of 87.84% from the refined comprehensive model, further highlighting the value of sex-specific analysis. Based on these findings, we created Gap-App, a web application that enables the use of individual gene expression profiles combined with sex information for personalized survival predictions. Gap-App, the first online tool aiming to bridge the gap between complex genomic data and clinical application and facilitating more precise and individualized cancer care, marks a significant advancement in personalized prognosis. The study not only underscores the importance of acknowledging sex differences in personalized prognosis, but also sets the stage for the shift from traditional one-size-fits-all to more personalized and targeted medicine. The GAP-App service is freely available at www.gap-app.org.
在本研究中,我们利用RNA测序基因表达数据和先进的机器学习技术,确定了男性和女性胰腺导管腺癌(PDAC)患者之间不同的基因表达谱。基于这一见解,我们开发了性别特异性的3年生存预测模型以及一个单一的综合模型。尽管样本量较小,但这些性别特异性模型的表现优于单一的通用模型。我们通过使用从这些初始模型中提取的最重要特征进一步优化了我们的模型。优化后的性别特异性预测模型,男性的准确率提高到92.62%,女性为91.96%,而优化后的综合模型准确率为87.84%,这进一步凸显了性别特异性分析的价值。基于这些发现,我们创建了Gap-App,这是一个网络应用程序,它能够结合个体基因表达谱和性别信息进行个性化生存预测。Gap-App是首个旨在弥合复杂基因组数据与临床应用之间差距并促进更精确和个性化癌症治疗的在线工具,标志着个性化预后方面的重大进展。该研究不仅强调了在个性化预后中认识性别差异的重要性,还为从传统的一刀切模式向更个性化和靶向性药物治疗的转变奠定了基础。Gap-App服务可在www.gap-app.org上免费获取。