Suppr超能文献

利用电生理数据分析生物医学时间序列分割的性能。

Analyzing the performance of biomedical time-series segmentation with electrophysiology data.

作者信息

Redina Richard, Hejc Jakub, Filipenska Marina, Starek Zdenek

机构信息

Department of Biomedical Engineering, Brno University of Technology, Technicka 12, Brno, 61600, Czech Republic.

International Clinical Research Centre, St. Anna's Faculty Hospital, Pekarska 53, Brno, 60200, Czech Republic.

出版信息

Sci Rep. 2025 Apr 6;15(1):11776. doi: 10.1038/s41598-025-90533-y.

Abstract

Accurate segmentation of biomedical time-series, such as intracardiac electrograms, is vital for understanding physiological states and supporting clinical interventions. Traditional rule-based and feature engineering approaches often struggle with complex clinical patterns and noise. Recent deep learning advancements offer solutions, showing various benefits and drawbacks in segmentation tasks. This study evaluates five segmentation algorithms, from traditional rule-based methods to advanced deep learning models, using a unique clinical dataset of intracardiac signals from 100 patients. We compared a rule-based method, a support vector machine (SVM), fully convolutional semantic neural network (UNet), region proposal network (Faster R-CNN), and recurrent neural network for electrocardiographic signals (DENS-ECG). Notably, Faster R-CNN has never been applied to 1D signals segmentation before. Each model underwent Bayesian optimization to minimize hyperparameter bias. Results indicated that deep learning models outperformed traditional methods, with UNet achieving the highest segmentation score of 88.9 % (root mean square errors for onset and offset of 8.43 ms and 7.49 ms), closely followed by DENS-ECG at 87.8 %. Faster R-CNN and SVM showed moderate performance, while the rule-based method had the lowest accuracy (77.7 %). UNet and DENS-ECG excelled in capturing detailed features and handling noise, highlighting their potential for clinical application. Despite greater computational demands, their superior performance and diagnostic potential support further exploration in biomedical time-series analysis.

摘要

对生物医学时间序列进行准确分割,如心内电图,对于理解生理状态和支持临床干预至关重要。传统的基于规则和特征工程的方法在处理复杂的临床模式和噪声时往往面临困难。最近深度学习的进展提供了解决方案,在分割任务中显示出各种优点和缺点。本研究使用来自100名患者的独特心内信号临床数据集,评估了五种分割算法,从传统的基于规则的方法到先进的深度学习模型。我们比较了一种基于规则的方法、支持向量机(SVM)、全卷积语义神经网络(UNet)、区域提议网络(Faster R-CNN)和用于心电图信号的循环神经网络(DENS-ECG)。值得注意的是,Faster R-CNN以前从未应用于一维信号分割。每个模型都进行了贝叶斯优化,以尽量减少超参数偏差。结果表明,深度学习模型优于传统方法,UNet的分割得分最高,为88.9%(起始和结束的均方根误差分别为8.43毫秒和7.49毫秒),紧随其后的是DENS-ECG,为87.8%。Faster R-CNN和SVM表现中等,而基于规则的方法准确性最低(77.7%)。UNet和DENS-ECG在捕捉详细特征和处理噪声方面表现出色,突出了它们在临床应用中的潜力。尽管计算需求更大,但其卓越的性能和诊断潜力支持在生物医学时间序列分析中进一步探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b760/11973175/a7dcba8368f4/41598_2025_90533_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验