Hu Ruixiong, Zheng Likai, Huang Bin, Xuan Yimin
School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland.
Mater Horiz. 2025 May 19;12(10):3320-3331. doi: 10.1039/d5mh00084j.
Non-radiative recombination and suboptimal interfacial contact at the hole transportation layer (HTL)/perovskite interface critically suppress the device performance and stability of inverted perovskite solar cells (PSCs). Herein, we proposed a dissolvable molecular bridge (DMB) strategy by introducing 4-fluorobenzylphosphonic acid (4F-BPA) on the HTL for synergetic buried interface modification, aiming at both defect passivation and interfacial contact enhancement. Comprehensive characterizations and analyses revealed that approximately 80% of 4F-BPA on the HTL was dissolved into the perovskite precursor, promoting controlled crystallization through intermediate phase formation and predominantly accumulating at the HTL/perovskite interface, where it strongly coordinated with lead(II) cations to enhance the interfacial contact and align the energy levels. As a result, the champion device achieved a power conversion efficiency (PCE) of 25.10% with a fill factor of 84.23%. The unencapsulated devices (also without a UV filter) maintained 87.1% of their initial PCE after 1000 h of maximum power point tracking under 1 sun illumination (ISOS-L-1I) and retained 92.7% of their initial PCE after 1000 h in the dark storage test (ISOS-D-1). The DMB strategy establishes a universal and cost-efficient framework for buried interface engineering, unlocking new possibilities for large-area device fabrication and industrial-scale implementation.
空穴传输层(HTL)/钙钛矿界面处的非辐射复合以及欠佳的界面接触严重制约了倒置钙钛矿太阳能电池(PSC)的器件性能和稳定性。在此,我们提出了一种可溶解分子桥(DMB)策略,即在HTL上引入4-氟苄基膦酸(4F-BPA)以协同修饰埋入界面,旨在同时实现缺陷钝化和界面接触增强。全面的表征和分析表明,HTL上约80%的4F-BPA溶解到钙钛矿前驱体中,通过中间相形成促进可控结晶,并主要积聚在HTL/钙钛矿界面处,在那里它与铅(II)阳离子强烈配位以增强界面接触并使能级对齐。结果,最佳器件实现了25.10%的功率转换效率(PCE),填充因子为84.23%。未封装的器件(也没有紫外线滤光片)在1个太阳光照下最大功率点跟踪1000小时(ISOS-L-1I)后保持其初始PCE的87.1%,在黑暗存储测试1000小时(ISOS-D-1)后保持其初始PCE的92.7%。DMB策略为埋入界面工程建立了一个通用且经济高效的框架,为大面积器件制造和工业规模实施开辟了新的可能性。