Heukensfeldt Jansen Isabelle, Abad Nastaren, Ajala Afis, Bhushan Chitresh, Werner J Kent, DeMarco J Kevin, Morris H Douglas, Pollatou Angeliki, Kohls Gail, Yalewayker Haymanot, Yalewayker Samrawit, Hood Maureen, Skeete Sonja, Metzger Elizabeth, Ho Vincent B, Foo Thomas K F, Marinelli Luca
MRI and Superconducting Magnets, GE Healthcare, Niskayuna, NY, USA.
Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
Interface Focus. 2025 Apr 4;15(1):20240041. doi: 10.1098/rsfs.2024.0041.
A phase-sensitive diffusion tensor magnetic resonance imaging (MRI) sequence is proposed with pulse timing optimization scheme to achieve velocity resolution of less than 20μm s and an integrated image reconstruction and velocity map generation pipeline. The application of ultra-slow flow relevant to neurofluids is enabled by the use of a recently developed, ultra-high-performance brain MRI gradient system. By simultaneously reconstructing magnitude and phase data, both metrics that characterize diffusive fluid motion and coherent velocity maps are calculated non-invasively in human subjects, time-resolved over the entire cardiac cycle. The resulting acquisition and reconstruction of velocity maps in brain parenchyma, enabled by high-performance brain imaging systems, promises to be an important approach to investigating ultra-slow neurofluid flow and glymphatic circulation.
提出了一种具有脉冲定时优化方案的相敏扩散张量磁共振成像(MRI)序列,以实现小于20μm/s的速度分辨率,并构建集成的图像重建和速度图生成流程。通过使用最近开发的超高性能脑MRI梯度系统,可实现与神经流体相关的超慢血流应用。通过同时重建幅度和相位数据,在人体受试者中以无创方式计算出表征扩散流体运动的指标和相干速度图,并在整个心动周期内进行时间分辨。高性能脑成像系统实现的脑实质速度图的采集和重建,有望成为研究超慢神经流体流动和类淋巴循环的重要方法。