Suppr超能文献

超强度梯度 MRI 扫描仪采集的扩散数据处理中梯度非线性校正策略的对比研究。

A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra-strong gradient MRI scanners.

机构信息

Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, United Kingdom.

Royal United Hospitals Bath, NHS Foundation Trust, Bath, United Kingdom.

出版信息

Magn Reson Med. 2021 Feb;85(2):1104-1113. doi: 10.1002/mrm.28464. Epub 2020 Oct 3.

Abstract

PURPOSE

The analysis of diffusion data obtained under large gradient nonlinearities necessitates corrections during data reconstruction and analysis. While two such preprocessing pipelines have been proposed, no comparative studies assessing their performance exist. Furthermore, both pipelines neglect the impact of subject motion during acquisition, which, in the presence of gradient nonlinearities, induces spatio-temporal B-matrix variations. Here, spatio-temporal B-matrix tracking (STB) is proposed and its performance compared to established pipelines.

METHODS

Diffusion tensor MRI (DT-MRI) was performed using a 300 mT/m gradient system. Data were acquired with volunteers positioned in regions with pronounced gradient nonlinearities, and used to compare the performance of six different processing pipelines, including STB.

RESULTS

Up to 30% errors were observed in DT-MRI parameter estimates when neglecting gradient nonlinearities. Moreover, the order in which inhomogeneity, eddy current and gradient nonlinearity corrections were performed was found to impact the consistency of parameter estimates significantly. Although, no pipeline emerged as a clear winner, the STB approach seemed to yield the most consistent parameter estimates under large gradient nonlinearities.

CONCLUSIONS

Under large gradient nonlinearities, the choice of preprocessing pipeline significantly impacts the estimated diffusion parameters. Motion-induced spatio-temporal B-matrix variations can lead to systematic bias in the parameter estimates, that can be ameliorated using the proposed STB framework.

摘要

目的

在大梯度非线性下获得的扩散数据的分析需要在数据重建和分析过程中进行校正。虽然已经提出了两种这样的预处理管道,但没有评估它们性能的比较研究。此外,这两种管道都忽略了在采集过程中受试者运动的影响,而在存在梯度非线性的情况下,这会导致时空 B 矩阵变化。这里提出了时空 B 矩阵跟踪(STB),并对其性能与已建立的管道进行了比较。

方法

使用 300 mT/m 梯度系统进行扩散张量 MRI(DT-MRI)。在具有明显梯度非线性的区域定位志愿者进行数据采集,并用于比较六种不同处理管道的性能,包括 STB。

结果

当忽略梯度非线性时,DT-MRI 参数估计值会出现高达 30%的误差。此外,还发现不均匀性、涡流和梯度非线性校正的执行顺序对参数估计的一致性有显著影响。虽然没有一个管道明显胜出,但在大梯度非线性下,STB 方法似乎能产生最一致的参数估计值。

结论

在大梯度非线性下,预处理管道的选择会显著影响估计的扩散参数。运动引起的时空 B 矩阵变化会导致参数估计值出现系统偏差,而使用提出的 STB 框架可以改善这种偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebf/8103165/d5806a90f606/MRM-85-1104-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验